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Lectures on Spinodal Instabilities in Phase Transitions: Solutions
Jørgen Randrup [last modified August 31, 2012]

I-1
Thermodynamic limit: Consider uniform matter in a volume V ; its total energy is E and it
contains a total of N “particles”. In the thermodynamics limit, V → ∞, the physical properties
depend only on the intensive quantities ε ≡ E/V (the energy density) and ρ ≡ E/V (the number
density); so the entropy is S(V,E,N) = V σ(ε, ρ) where σ ≡ S/V is the entropy density.

1. Show that 1/T = ∂ES(V,E,N)V N is given by β(ε, ρ) = ∂εσ(ε, ρ) and the the quantity
−µ/T = ∂NS(V,E,N)V E is given by α(ε, ρ) = ∂ρσ(ε, ρ).

β : ∂ES(V,E,N)V N = ∂EV σ(E/V,N/V ) = V ∂εσ(ε, ρ)∂E(E/V ) = ∂εσ(ε, ρ)

α : ∂NS(V,E,N)V E = ∂NV σ(E/V,N/V ) = V ∂ρσ(ε, ρ)∂N (N/V ) = ∂ρσ(ε, ρ)

2. Show that p/T = ∂V S(V,E,N)EN is given by π(ε, ρ) = σ(ε, ρ) − β(ε, ρ)ε − α(ε, ρ)ρ.

π : ∂V S(V,E)EN = ∂V V σ(E/V,N/V )

= σ(ε, ρ) + V ∂εσ(ε, ρ)∂V (E/V ) + V ∂ρσ(ε, ρ)∂V (E/V )

= σ(ε, ρ) − V βE/V 2
− V αN/V 2 = σ(ε, ρ) − β(ε, ρ)ε − α(ε, ρ)ρ

I-2
Canonical scenario: In the canonical scenario the independent variable are ρ and T and the
basic function is the free energy density f = ε − Tσ. Show that the chemical potential and hte
entropy density can be obtained as µT (ρ) = ∂ρfT (ρ) and σT (ρ) = −∂T fT (ρ); show furthermore
that the pressure is pT (ρ) = ρ2∂ρ(fT (ρ)/ρ).

See how f responds to a variation in ρ and ε, using ∂εσ = β = 1/T and ∂ρσ = α = −µ/T :

δf = δε − Tδσ − σδT = δε = σε − T [∂εσδε + ∂ρσδρ] − σδT = µδρ − σδT ,

so (∂f/δ)T ρ = µ and (∂f/δT )ρ = −σ. Furthermore, ρ2∂ρ(fT (ρ)/ρ) = ρ2[µT (ρ)/ρ− fT (ρ)/ρ2] =
µT (ρ)ρ − fT (ρ) = T [σT (ρ) − βεT (ρ) − αT (ρ)ρ] = T (pT (ρ)/T ) = pT (ρ).

I-3
Phase coexistence: Assume that the free energy density fT (ρ) is locally concave. Then there
must exist two densities, ρ1(T ) and ρ2(T ), at which the tangents to fT (ρ) coincide.

1. Show that then the chemical potentials at ρ1 and ρ2 are equal.

The chemical potential is given by µT (ρ) = ∂ρfT (ρ), i.e. it is the slope of the curve fT (ρ),
so it is obviously the same at the two tangent points, µT (ρ2) = µT (ρ2) = µ0(T ).

2. Show that the corresponding two pressures are also equal.

The general relation π ≡ p/T = σ−βε−αρ together with the definition f ≡ ε−Tσ imply
that the pressure is given by pT (ρ) = µρ−fT (ρ). Therefore the pressure difference is given
by pT (ρ2) − pT (ρ1) = fT (ρ1) + (ρ2 − ρ1)µ0 − fT (ρ2) which vanishes because f at one of
the touching densities can be obtained by extrapolating from the other touching density
along the common tangent having the slope µ0.

Thus a common tangent guarantees that both µ and p match, hence that the corresponding two
phases are therefore in mutual thermodynamic equilibrium: T1 = T2, µ2 = µ2, p1 = p2.
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I-4
Interface profile: Consider two coexisting phases of bulk matter having a common interface.
The interface profile ρ(x) is determined by the equation C∂2

xρ(x) = µT (ρ(x))−µ0. This equation
is mathematically equivalent to that governing the motion ξ(t) of a particle in a potential,
M∂2

t ξ = ∂ξU(ξ), identifying x with the ‘time’ t and ρ with the ‘position’ ξ; C is then the ‘mass’
M , while −∆fT (ρ) = fM

T (ρ) − fT (ρ) is the ‘potential’ U(ξ). Show that the limiting behavior is
ξ → ρ1 and ∂tξ → 0 for t → −∞ and ξ → ρ2 and ∂tξ → 0 for t → +∞. Furthermore, show that
energy conservation yields the relation 1

2
C(∂xρ)2 = ∆fT (ρ(x)).

The potential vanishes at both end points, U(ξi) = 0, because ∆fT (ρi) = 0. Furthermore,
ρ(x) must approach the bulk values far away from the interface, so ∂xρ(x) must approach zero,
equivalent to ξ(t) → 0 for t → ±∞. The sum of kinetic and potential energy is constant in time;
the constant is zero because both quantities vanish for t → ±∞. Thus there is neither potential
nor kinetic energy in these limits, so the total energy is zero. Consequently, the kinetic energy
equals minus the potential energy, 1

2
(∂tξ)

2 = −U(ξ), i.e.
1

2
C(∂xρ)2 = ∆fT (ρ(x)).

II-1
Isotropic flow in N dimensions: If the spatial variation of the viscosity coefficients η (shear)
and ζ (bulk) may be ignored, the Euler equation becomes ∇ ·T = ∇p−η∆v− [1

3
η+ζ]∇(∇ ·v),

where T (r, t) is the spatial part of the stress tensor T µν and v(r, t) is the local flow velocity.

1. Show that for an isotropic expansion [ρ(r) = ρ(r) and v(r) = v(r)r̂] the dissipative term
in the Euler equation contains η and ζ only in the combination ξ = 4

3
η + ζ, in any spatial

dimension N .

It is advantageous to use spherical coordinates, so ∇ = r̂∂r+. . ., where only the radial part
is relevant due to the rotational symmetry. So ∇·r = N , ∇r = r̂, ∇·r̂ = (N−1)/r. Thus,
if F (r) ≡ f(r)r̂ then ∇ · F (r) = [∂r + (N − 1)/r]f(r) = r1−N∂rr

N−1f(r) and ∆f(r) =
∂rr

1−N∂rr
N−1f(r), so ∆v(r) and ∇(∇ · v(r)) are both equal to r̂∂rr

1−N∂rr
N−1v(r) and

consequently η∆v(r) + [1
3
η + ζ]∇(∇ · v(r)) = [4

3
η + ζ]r̂∂rr

1−N∂rr
N−1v(r).

2. For such isotropic flows in N dimensions, determine the limiting velocity profile v(r) for
which the dissipative term in the Euler equation vanishes.

The viscous term vanishes if ∂rr
1−N∂rr

N−1v(r)
.
= 0 which occurs if ∂rr

N−1v(r) ∼ rN−1.
Consequently, we must have v(r) ∼ r, i.e. a Hubble scaling expansion (or contraction).

Thus, because the evolving fluid will adjust its motion so as the reduce (and eventually eliminate)
the (entropy producing) viscous term, it will generally approach a Hubble expansion in time.

II-2
Sound speeds: Verify these expressions for the isentropic and isothermal sound speeds:

1. v2
s ≡ (ρ/h)(∂p/∂ρ)s = −(T/h)[h2σεε + 2hρσερ + ρ2σρρ], where s = σ/ρ: Use

βδp + pδβ = δ/σ − β/δε − εδβ − α/δρ − ρδα to get δp = −T [hδβ + ρδα] together with
δβ = σεεδε + σερδρ and δα = σρεδε + σρρδρ, and then that δs

.
= 0 requires ρδε = hδρ.

2. v2

T ≡ (ρ/h)(∂p/∂ρ)T = −(ρ/h)ρT [σεεσρρ − σ2
ερ]/σεε, with σε ≡ ∂εσ, et cetera: When

δT = 0 then δp = −ρTδα and 0
.
= δβ = σεεδε + σερδρ yields σεεδε = −σερδρ hence also

δα = σρεδε + σρρδρ = [σρρ − σ2
ερ/σεε]δρ for δT = 0.


