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Lectures on Spinodal Instabilities in Phase Transitions: Problems
Jørgen Randrup [last modified August 30, 2012]

I-1
Thermodynamic limit: Consider uniform matter in a volume V ; its total energy is E and it
contains a total of N “particles”. In the thermodynamics limit, V → ∞, the physical properties
depend only on the intensive quantities ε ≡ E/V (the energy density) and ρ ≡ E/V (the number
density); so the entropy is S(V,E,N) = V σ(ε, ρ) where σ ≡ S/V is the entropy density.

1. Show that 1/T = ∂ES(V,E,N)V N is given by β(ε, ρ) = ∂εσ(ε, ρ) and the the quantity
−µ/T = ∂NS(V,E,N)V E is given by α(ε, ρ) = ∂ρσ(ε, ρ).

2. Show that p/T = ∂V S(V,E,N)EN is given by π(ε, ρ) = σ(ε, ρ) − β(ε, ρ)ε − α(ε, ρ)ρ.

I-2
Canonical scenario: In the canonical scenario the independent variable are ρ and T and the
basic function is the free energy density f = ε − Tσ. Show that the chemical potential and the
entropy density can be obtained as µT (ρ) = ∂ρfT (ρ) and σT (ρ) = −∂T fT (ρ); show furthermore
that the pressure is pT (ρ) = ρ2∂ρ(fT (ρ)/ρ).

I-3
Phase coexistence: Assume that the free energy density fT (ρ) is locally concave. Then there
must exist two densities, ρ1 and ρ2, at which the tangents to fT (ρ) coincide.

1. Show that then the chemical potentials at ρ1 and ρ2 are equal.

2. Show that the corresponding two pressures are also equal.

I-4
Interface profile: Consider two coexisting phases of bulk matter having a common interface.
The interface profile ρ(x) is determined by the equation C∂2

xρ(x) = µT (ρ(x))−µ0. This equation
is mathematically equivalent to that governing the motion ξ(t) of a particle in a potential,
M∂2

t ξ = ∂ξU(ξ), identifying x with the ‘time’ t and ρ with the ‘position’ ξ; C is then the ‘mass’
M , while −∆fT (ρ) = fM

T (ρ) − fT (ρ) is the ‘potential’ U(ξ). Show that the limiting behavior is
ξ → ρ1 and ∂tξ → 0 for t → −∞ and ξ → ρ2 and ∂tξ → 0 for t → +∞. Furthermore, show that
energy conservation yields the relation 1

2
C(∂xρ)2 = ∆fT (ρ(x)).
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II-1
Isotropic flow in N dimensions: If the spatial variation of the viscosity coefficients η (shear)
and ζ (bulk) may be ignored, the Euler equation becomes ∇ ·T = ∇p−η∆v− [1

3
η+ζ]∇(∇ ·v),

where T (r, t) is the spatial part of the stress tensor T µν and v(r, t) is the local flow velocity.

1. Show that for an isotropic expansion [ρ(r) = ρ(r) and v(r) = v(r)r̂] the dissipative term
in the Euler equation contains η and ζ only in the combination ξ = 4

3
η + ζ, in any spatial

dimension N .

2. For such isotropic flows in N dimensions, determine the limiting velocity profile v(r) for
which the dissipative term in the Euler equation vanishes.

II-2
Sound speeds: Verify these expressions for the isentropic and isothermal sound speeds:

1. v2
s ≡ (ρ/h)(∂p/∂ρ)s = −(T/h)[h2σεε + 2hρσερ + ρ2σρρ], where s = σ/ρ,

2. v2

T ≡ (ρ/h)(∂p/∂ρ)T = −(T/h)(ρT/σεε)[σεεσρρ − ρσ2
ερ], with σε ≡ ∂εσ, et cetera.


