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 HRG: a Multi-component Model
Traditional HRG model: one hard-core radius R=0.25-0.3 fm

Two hard-core radii:  R_pi =0.62 fm,  R_other = 0.8 fm

 A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006)777 

 G. D.Yen. M. Gorenstein, W. Greiner, S.N. Yang, PRC (1997)56

Or:  R_mesons =0.25 fm,  R_baryons = 0.3 fm

 A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006) 777,
                                                                     PLB (2009) 673

Overall description of data (mid-rapidity or 4π multiplicities or 
ratios is good (remember J. Cleymans talk)! 
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Traditional HRG model: one hard-core radius R=0.25-0.3 fm

Two hard-core radii:  R_pi =0.62 fm,  R_other = 0.8 fm

 A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006)777 

 G. D.Yen. M. Gorenstein, W. Greiner, S.N. Yang, PRC (1997)56

Or:  R_mesons =0.25 fm,  R_baryons = 0.3 fm

 A. Andronic, P.Braun-Munzinger, J. Stachel, NPA (2006) 777,
                                                                     PLB (2009) 673

Overall description of data (mid-rapidity or 4π multiplicities or 
ratios is good (remember J. Cleymans talk)! 
     But there are problems with K+/pi+ and Λ/pi- ratios at    
                                      SPS energies!!!
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 Strangeness Horn Description Puzzle

DESCRIPTION OF HOT AND DENSE HADRON-GAS . . . PHYSICAL REVIEW C 85, 014908 (2012)
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In this exercise we have used full-phase-space 4π data, but
at RHIC energies midrapidity data are available for all the
ratios and hence they are accordingly used, so that we can
remove any possible influence on particle ratios arising due to
hydrodynamical flow [24]. This allows us to study the hadronic
ratios without bothering about the expansion of the system
at freeze-out. However, we have used RHIC data available
at midrapidity at energies of 130 and 200 GeV, respectively.
Moreover, the midrapidity and full-phase-space data at these
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FIG. 6. Variation of chemical freeze-out temperature with respect
to baryon chemical potential.

energies differ only slightly as pointed out by Alt et al. for
K+/π+ and K−/π− ratios [26].

In Fig. 5, we show the parametrization of the freeze-out
values of the baryon chemical potential with respect to the
center-of-mass energy, and similarly, in Fig. 6, we show the
chemical freeze-out curve between temperature and baryon
chemical potential. The fits demonstrate that the parameters in
parametrizations (12) and (13) have been suitably chosen and
the experimental variable such as center-of-mass energy can
be described well by the variables T and µB of the fireball.

IV. ENERGY DEPENDENCE OF HADRON RATIOS

In a series of measurements of Pb-Pb and Au-Au collisions
at various center-of-mass energies [30–34], it is found that
there is an unusually sharp variation giving rise to peaks in the
K+/π+ and "/π− ratios. Such a strong variation of K+/π+

with energy does not occur in p-p collisions and, therefore, has
been attributed to the presence of unusual phenomena of the
QGP formation. This transition is referred as the “horn” in Ref.
[30]. A strong variation of "/π− with energy has also been
attributed as a signal for the existence of a critical point in the
QCD phase diagram [35,36] and nontrivial information about
the critical temperature TC ≈ 176 MeV has been extracted
[36]. A sharp rise at low energies, with a mild maximum and
a subsequent flattening of K+/π+, was also reported by many
authors [15,18,37] using various statistical model calculations.
Nayak et al. [38] have also explained the horn by using a
microscopic approach for the HG. Similarly, a good fit with
the experimental data for the horn has been proclaimed as the
onset of QGP formation [39–41]. In Fig. 7, we show the results
of our calculation for K+/π+ and we compare our results
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 R_pi =0. fm,  R_other = 0.8 fm
 Very sophisticated excluded volume, but 
thermodynamically inconsistent model! 

 A. Andronic, P.Braun-Munzinger, J. Stachel,
                                                      PLB (2009) 673

Short dashed line: a desired result
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Figure 4. Energy dependence of the relative production ratios K+/π+ and Λ/π−. With the
dotted line we show for the K+/π+ ratio an estimate of the effect of higher mass resonances (see
text). The dashed lines show the energy dependence of T (upper panel) and µb (lower panel).

neutrality 3 , assumed in our calculations.

The model describes the K+/π+ data very well 4 over the full energy range, as a con-
sequence of the inclusion in the code of the high-mass resonances and of the σ meson,
while our earlier calculations [12] were overpredicting the SPS data. At RHIC energies,
the quality of the present fits is essentially unchanged compared to [12], as also the data
have changed somewhat. The model also describes accurately the Λ/π− data. We note
that the maxima in the two production ratios are located at different energies [35]. The
model calculations reproduce this feature in detail.

The calculated K+/π+ ratio (solid line in Fig. 4) is likely to decrease further at energies
beyond the maximum and the peak is likely to sharpen somewhat if our presumably

3 Recent studies within the UrQMD model [34] suggest the possible presence of net strangeness
at midrapidity; the present analysis lends no support to this conjecture.
4 On a statistical basis, with a relatively good χ2/Ndf=21/12.
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Figure 4. Energy dependence of the relative production ratios K+/π+ and Λ/π−. With the
dotted line we show for the K+/π+ ratio an estimate of the effect of higher mass resonances (see
text). The dashed lines show the energy dependence of T (upper panel) and µb (lower panel).

neutrality 3 , assumed in our calculations.

The model describes the K+/π+ data very well 4 over the full energy range, as a con-
sequence of the inclusion in the code of the high-mass resonances and of the σ meson,
while our earlier calculations [12] were overpredicting the SPS data. At RHIC energies,
the quality of the present fits is essentially unchanged compared to [12], as also the data
have changed somewhat. The model also describes accurately the Λ/π− data. We note
that the maxima in the two production ratios are located at different energies [35]. The
model calculations reproduce this feature in detail.

The calculated K+/π+ ratio (solid line in Fig. 4) is likely to decrease further at energies
beyond the maximum and the peak is likely to sharpen somewhat if our presumably

3 Recent studies within the UrQMD model [34] suggest the possible presence of net strangeness
at midrapidity; the present analysis lends no support to this conjecture.
4 On a statistical basis, with a relatively good χ2/Ndf=21/12.

Too slow decrease after maximum!
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 Further Problems at SPS Energies
Too steep increase before maximum and too slow decrease after it!

 A. Andronic, P.Braun-Munzinger, J. Stachel,
                                                      PLB (2009) 673

 S. K. Tiwari, P. K. Srivastava, and C. P. Singh, 
                                           PRC(2012) 85
                                                                    

0

0.05

0.1

0.15

0.2

0.25

K
+
 /

 !
+

E866,E895
E802,E866
NA49
STAR

NA44
PHENIX

thermal model

60

80

100

120

140

160

T
 (

M
e

V
)

T

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

10 10
2

10
3

"
 /

 !
-

E895 E896

NA49

STAR

NA57,NA44

thermal model

0

100

200

300

400

500

600

700

800

µ
b
 (

M
e

V
)

µ
b

#s
NN

 (GeV)

Figure 4. Energy dependence of the relative production ratios K+/π+ and Λ/π−. With the
dotted line we show for the K+/π+ ratio an estimate of the effect of higher mass resonances (see
text). The dashed lines show the energy dependence of T (upper panel) and µb (lower panel).

neutrality 3 , assumed in our calculations.

The model describes the K+/π+ data very well 4 over the full energy range, as a con-
sequence of the inclusion in the code of the high-mass resonances and of the σ meson,
while our earlier calculations [12] were overpredicting the SPS data. At RHIC energies,
the quality of the present fits is essentially unchanged compared to [12], as also the data
have changed somewhat. The model also describes accurately the Λ/π− data. We note
that the maxima in the two production ratios are located at different energies [35]. The
model calculations reproduce this feature in detail.

The calculated K+/π+ ratio (solid line in Fig. 4) is likely to decrease further at energies
beyond the maximum and the peak is likely to sharpen somewhat if our presumably

3 Recent studies within the UrQMD model [34] suggest the possible presence of net strangeness
at midrapidity; the present analysis lends no support to this conjecture.
4 On a statistical basis, with a relatively good χ2/Ndf=21/12.
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FIG. 8. Energy dependence of ! relative to pion. We compare
our results with the Cleymans-Suhonen model [25]. Symbols are
experimental data [26–29]. RHIC data are at midrapidity.

with those from other models. We find that our results almost
coincide with the results of the Cleymans-Suhonen model,
which involves a thermodynamical inconsistency. Figure 8
shows the variation of !/π− with

√
SNN . We have again

compared our results with various HG models [25] and we
find that our model calculation gives a much better fit to
the experimental data at all energies in comparison to other
models. Although we have not successfully reproduced the
sharp peak in K+/π+, we still get a broad peak, and our results
almost reproduce the data at lower as well as higher energies. In
the !/π− case we get a sharp peak around the center-of-mass
energy of 5 GeV and our results almost reproduce all the
features of the experimental data.

In Figs. 9 and 10, we show the variations of the multiplicity
ratios of φ and $ relative to pions with the center-of-mass
energy, respectively. Our model is able to reproduce the
experimental data only at lower

√
SNN . Although our model

calculation is not able to describe these ratios, it is closer
to the experimental data in comparison to other models,
especially at higher

√
SNN . We note that no thermal model

can suitably account for the multiplicity ratios of multistrange
particles since $− is sss and φ is ss̄ hidden-strange quark
combinations. Strangeness enhancement invoked in the case of
QGP formation will also give nonmatching results. However,
the quark coalescence model assuming QGP formation has
been claimed to explain the results [42]. In the thermal model,
this result for multistrange particles raises doubt about the
degree of chemical equilibration for strange hadrons reached
in the HG fireball. The failures of excluded-volume models
in these cases may indicate the presence of QGP formation.
Figure 11 shows the energy dependence of K− and p relative
to pions. There is a very good agreement between our model
calculations and the experimental data. These ratios saturate at
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FIG. 9. Energy dependence of φ relative to pion. We compare
our results with the Cleymans-Suhonen model [25]. Symbols are
experimental data [26–29]. RHIC data are at midrapidity.

higher energies, which means that the production rate of these
particles is independent of

√
SNN at higher energies. In Fig. 12,

we show the energy dependence of antiparticle-to-particle
ratios, e.g., K−/K+, p̄/p, !̄/!, and %̄+/%−. These ratios
increase sharply with respect to

√
SNN and then almost saturate

at higher energies, reaching the value 1.0 at the LHC energy.
This behavior shows that the production rates of antiparticles
relative to particles continuously increase with increasing
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Anti Lambda problem!
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 Simple Solution to Horn Puzzle
Use four hard-core radii:  R_pi,  R_K are fitting parameters;
                  R_mesons = 0.3 fm, R_baryons = 0.5 fm are fixed

 G. Zeeb, K.A. Bugaev, P.T. Reuter and H. Stoecker, Ukr. J. Phys. 53, 279 (2008) 

D.R. Oliinychenko, K.A. Bugaev and A.S. Sorin, arXiv:1204.0103 [hep-ph].
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p is pressure K-th charge density of i-th hadron sort is nK
i (K ∈ {B, S, I3})

B the second virial coefficients matrix bij ≡ 2π
3 (Ri + Rj)3

p = T
N∑

i=1

ξi , nK
i = QK

i ξi



1 + ξT Bξ
N∑

j=1

ξj





−1

, ξ =





ξ1

ξ2

...

ξs





, (1)

the variables ξi are the solution of the following system:

ξi = φi(T ) exp





µi

T
−

N∑

j=1

2ξjbij +
ξTBξ
N∑

j=1
ξj




, φi(T ) =

gi

(2π)3

∫
exp



−

√
k2 + m2

i

T



 d3k

︸ ︷︷ ︸
THERMAL DENSITY

. (2)

Chemical potential of i-th hadron sort: µi ≡ QB
i µB + QS

i µS + QI3
i µI3

QK
i are charges, mi is mass and gi is degeneracy of the i-th hadron sort

In a special case when all the elements of the second virial coefficients matrix are equal bij = v0 Eqs.

(1)–(2), evidently, reproduce the one component model with the pressure

p = T
N∑

i=1

φi(T ) exp
[
µi − p v0

T

]
, (3)

which defines the particle density of i-th kind of hadron as ni = φi(T)
1+pv0/T exp

[
µi−pv0

T

]
. The latter shows

that the ratios of two particle densities defined by (3) match that ones of the mixture of the corresponding

ideal gases for an arbitrary value of v0, while the particle densities themselves may essentially differ from

the particle densities of the ideal gas.

It is known that the resonance width is important at low temperatures [1]. Similarly to [1], the width

Γi of the resonance of mean mass mi is modeled by replacing the Boltzmann distribution function in the

particle thermal density (2) by its average over the Breit-Wigner mass distribution as

∫
exp



−

√
k2 + m2

i

T



 d3k →

∫ ∞
M0

dx
(x−mi)2+Γ2

i /4

∫
exp

(
−

√
k2+x2

T

)
d3k

∫ ∞
M0

dx
(x−mi)2+Γ2

i /4

, (4)

where M0 is the dominant decay channel mass. Such a substitution provides a simple, but reliable ap-

proximation to account for the resonance width.

The contribution of the resonance decays is accounted for as usual: the total density of hadron X

consists of the thermal part nth
X and the decay ones:

ntot
X = nth

X + ndecay = nth
X +

∑

Y

nth
Y Br(Y → X) , (5)

where Br(Y → X) is the decay branching of the Y-th hadron into the hadron X. The masses, the

widths and the strong decay branchings of all hadrons were taken from the particle tables used by the

thermodynamic code THERMUS [21].

NO strangeness suppression is included!
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Results for Ratios (AGS)

the K+/π+ and the K−/π− ratios, but in the fit either one or the other is included
(as only one is statistically independent from the ratios π−/π+ and K−/K+), depending
on the minimum value of χ2. The resulting values of T and µb are between 64 and 93
MeV and 760 and 580 MeV, respectively. The model describes the data very well; the χ2

values per number of degrees of freedom, χ2/Ndf are 1.0/2, 0.43/3, 1.15/4, 1.14/3 for 2,
4, 6, and 8 AGeV, respectively. Although this could be accidental, as the number of data
points in the fits is very small, these low values could imply that the systematic errors
of the measurements are actually overestimated. We mention that if we do not include
in the calculations the finite widths of resonances the corresponding values of χ2/Ndf are
slightly worse, but the values of T and µb change only marginally. For both cases, the
χ2 distributions are narrow around the minimum and there is no correlation between T
and µb as is observed for higher energies (see below). In some cases, close-by minima are
identified and we have included this feature into the errors of the parameters.
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Fig. 4. The χ2 contours (in steps of 1 from the minimum, marked by the dot) and yield ratios
with best fit at mid-rapidity for the top AGS beam energy of 10.7 AGeV. The diamonds represent
ratios of yields integrated over 4π. The ratio K−/π− was not included in the fit. Note the scaling
factor of 100 for the ratios p̄/p and Λ̄/Λ.

At the top AGS beam kinetic energy of 10.7 AGeV (
√

sNN=4.85 GeV) there is a large
set of hadron yields experimentally available: p [51,52,46], d [52], π [51,48], K [48,53], Λ
[54], φ [55], Λ̄ [56]. The thermal fit to the data yields T = 124±3 MeV and µb = 537±10
MeV, corresponding to a minimum of χ2/Ndf=6.9/7 (the errors correspond to 1 σ). The
model fits the data very well, as evident from the narrow χ2 distribution and from the
comparison of the ratios shown in Fig. 4. Not included in the fit is the ratio K−/π−,which
is not statistically independent from the ratios already included in the fit. The ratio Λ̄/Λ
deviates from the model calculations substantially (Λ̄ ”anomaly” [56]). The experimental
Λ̄/Λ is a factor of 2 higher than the model value and as such has a significant contribution
to the χ2 (if Λ̄/Λ is not included in the fit, the resulting values are: T = 123 ± 3 MeV,
µb = 538 ± 9 MeV, χ2/Ndf=4.0/6).

The fit without the ratios d/p, p̄/p, Λ̄/Λ, and φ/K+ gives T = 108 ± 9, µb = 555 ± 18

6

FIG. 1: The particle yield ratios described by the present multi-component hadron gas model. The best fit for
√

sNN = 4.9 GeV is obtained for T " 131 MeV, µB " 539 MeV, µI3 " −16 MeV (left panel), whereas for
√

sNN = 17 GeV (right panel) it is obtained for T " 147.6 MeV, µB " 218 MeV, µI3 " −2.1 MeV. A yield

ratio of two particles is denoted by the ratio of their respective symbols.

to an essential improvement of the kaons and their ratios in the present model. Thus, the Λ̄ anomaly

[1, 30] is not seen at this energy.

In the SPS energy range we used only the NA49 mid-rapidity data for all ratios. There are two main

reasons for such a selection. First, the NA49 are self-consistent and have relatively small error bars for

all energies. Second, it is well known that right these data are traditionally the most difficult ones to be

described within the thermal model [1, 7, 8, 31, 32]. Therefore, in order to demonstrate the new possibilities

of the multi-component hadron resonance model we concentrate on the NA49 data fitting. In contrast to

[1], we included into the fit procedure Ω/π− and Ξ/π− ratios, but excluded from it the dependent Ξ/Λ

and Ω/Ξ ratios for hyperons. The results for the highest SPS energy √
sNN = 17.3 GeV are shown in

the right panel of Fig. 1. These results are compared to the NA49 mid-rapidity data for pions, kaons and

(anti)protons [33, 34], for the set of strange (anti)hyperons [35–37] and for φ meson [38].

The variation of the Rπ and RK radii immediately allowed us to notably improve the description of

K+/π+ ratio and all the ratios involving the strange hyperons and pions (for instance, look at Ξ−/π−

and Ω/π−). This also led to a slight improvement of K−/K+ ratio. However, a slight change for the

total strangeness of kaons means a larger change of the strange hyperons densities. Although the most

problematic ratios at this energy, namely Λ̄/Λ, Ξ̄−/Ξ− are Ω̄/Ω, are improved only marginally compared

to [1], but as one can see from the right panel of Fig. 1, the crossed ratios of Ξ/Λ and Ω/Ξ, which were

not fitted, are automatically reproduced well. The obtained results for the chemical FO temperature T and

baryonic chemical potential µB almost coincide with the values T " 152 MeV, µB " 226 MeV found

in [1] for this energy for the fitting the NA49 data alone. However, the resulting quality of our fit at this

energy of collision is essentially better: χ2/dof " 1.57 determined in this work against χ2/dof " 2.78

A. Andronic, P.Braun-Munzinger, J. Stachel, 
NPA (2006)777 

K.A.B., D.R. Oliinychenko, A.S. Sorin, G.M. Zinovjev,
 arXiv:1208.5968 [hep-ph].

There is an anti Lambda problem!
Also K-/K+ and K/pi and Lambda/pi-
are not well described!

There is NO anti Lambda problem here
 and all ratios are well described!
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 Description of Horns at SPS

Best global fit of all ratios gives  R_pi=0. fm,  R_K =0.35 fm,

χ^2/dof =1.018      for     fixed: R_baryons =0.5 fm, R_mesons = 0.3 fm 

Note that Lambda and other hyperons can be described better!
7



Wide Resonances in Thermal Media
Wide resonances are VERY important in a thermal model.

For instance, description of pions cannot be achieved without 

5

It is known that the resonance width is important at low temperatures [1]. Similarly to [1], the width

Γi of the resonance of mean mass mi is modeled by replacing the Boltzmann distribution function in the

particle thermal density (2) by its average over the Breit-Wigner mass distribution as

∫
exp



−

√
k2 + m2

i

T



 d3k →

∫ ∞
M0

dx
(x−mi)2+Γ2

i /4

∫
exp

(
−

√
k2+x2

T

)
d3k

∫ ∞
M0

dx
(x−mi)2+Γ2

i /4

, (4)

where M0 is the dominant decay channel mass. Such a substitution provides a simple, but reliable ap-

proximation to account for the resonance width.

σ meson: mσ = 484 ± 24 MeV, width Γσ = 510 ± 20 MeV

The contribution of the resonance decays is accounted for as usual: the total density of hadron X

consists of the thermal part nth
X and the decay ones:

ntot
X = nth

X + ndecay = nth
X +

∑

Y

nth
Y Br(Y → X) , (5)

where Br(Y → X) is the decay branching of the Y-th hadron into the hadron X. The masses, the

widths and the strong decay branchings of all hadrons were taken from the particle tables used by the

thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the

strangeness is conserved, then it is sufficient to impose the vanishing of the total strangeness for ther-

mal densities at chemical FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently [5] the baryonic charge and isospin conservation laws should not

be imposed to fit the hadron multipllicities since they lead to unphysically huge FO volumes. Therefore,
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The first item will probably never be resolved satisfactorily due to the width of
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Splitting the spectrum into baryons and mesons further decreases the quality of the
fits to the mass dependence of the mass spectrum. We therefore propose to stick to
the original analysis of Hagedorn and consider a sum over all resonances, baryons,
mesons, strange, non-strange, charm, bottom etc.. This is the state that is produced
at the Large Hadron Collider (LHC), namely, a hadronic ensemble containing all
possible resonances. The result is shown in Fig. 1 and leads to a good determina-
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Fig. 1. Cumulative number of hadronic resonances as a function of m. Again the hadronic data
are made up of all resonances, including baryons, mesons and also heavy resonances made up of
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not exceed a limiting temperature and increasing the beam energy in proton−proton
and proton−antiproton collisions results in more and more hadronic resonances

FWM: these 
hadronic states
are absent due to 
confinement
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Resonance Contribution in Thermal Media
Therefore, at chemical freeze-out 

we substitute  
D. Hahn and H. Stoecker, Nucl. Phys. A (1986) 452  
K.G. Denisenko and St. Mrowczynski, PRC (1987) 35 
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It is known that the resonance width is important at low temperatures [1]. Similarly to [1], the width

Γi of the resonance of mean mass mi is modeled by replacing the Boltzmann distribution function in the
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∫
exp



−

√
k2 + m2

i

T



 d3k →

∫ ∞
M0

dx
(x−mi)2+Γ2

i /4

∫
exp

(
−

√
k2+x2

T

)
d3k

∫ ∞
M0

dx
(x−mi)2+Γ2

i /4

, (4)

where MTh
j is the dominant decay channel mass. Such a substitution provides a simple, but reliable

approximation to account for the resonance width.
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The contribution of the resonance decays is accounted for as usual: the total density of hadron X

consists of the thermal part nth
X and the decay ones:

ntot
X = nthermal

X + ndecay
X = nth

X +
∑

Y

nth
Y Br(Y → X) (5)

Br(Y → X) is decay branching of Y-th hadron into hadron X

The masses, the widths and the strong decay branchings of all hadrons were taken from the particle

tables used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the

strangeness is conserved, then it is sufficient to impose the vanishing of the total strangeness for ther-

mal densities at chemical FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently [5] the baryonic charge and isospin conservation laws should not

be imposed to fit the hadron multipllicities since they lead to unphysically huge FO volumes. Therefore,

in this work for the data at given energy of collision we use the following fitting parameters: temperature
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where MTh
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σ meson: mσ = 484 ± 24 MeV, width Γσ = 510 ± 20 MeV

The contribution of the resonance decays is accounted for as usual: the total density of hadron X

consists of the thermal part nth
X and the decay ones:

ntot
X = nthermal

X + ndecay
X = nth

X +
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Y Br(Y → X) (5)

Br(Y → X) is decay branching of Y-th hadron into hadron X

The masses, the widths and the strong decay branchings of all hadrons were taken from the particle
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The strange charge conservation completes the list of equations used. Since in strong decays the

strangeness is conserved, then it is sufficient to impose the vanishing of the total strangeness for ther-
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be imposed to fit the hadron multipllicities since they lead to unphysically huge FO volumes. Therefore,
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This approximation is usually criticized, but 
 1. within approaches that employ a few hadronic 

dof             
2. at least at low T the deviation from elaborate formulae is  

about experimental uncertainty for the Delta 1232 peak   
W. Weinhold, B. Friman, W. Noerenberg, PLB (1998) 433

However, since more elaborate approximations lead to huge 
complications without qualitative and quantitative improvements,  the 
thermal models use this one at chemical freeze-out.
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Sigma Meson at Low T
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle

tables used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the

strangeness is conserved, then it is sufficient to impose the vanishing of the total strangeness for ther-

mal densities at chemical FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently [5] the baryonic charge and isospin conservation laws should not

be imposed to fit the hadron multipllicities since they lead to unphysically huge FO volumes. Therefore,

in this work for the data at given energy of collision we use the following fitting parameters: temperature

T , baryonic chemical potential µB and the chemical potential of the third projection of isospin µI3. Note

that such a procedure is completely consistent with fitting the hadron multiplicities instead of hadron yield

ratios [5], the main difference is only that to fit the hadron multiplicities one has to use the chemical FO

volume V as an additional parameter. As it was explained earlier the global fitting parameters are the

hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In addition, to

demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor into

simulations. Then one should expect some minor problems with the description of multi-strange baryons.

8/30/12 1:14 AMTemperature and Pressure in Stars

!"#$%&'$ 2 &( 2http://csep10.phys.utk.edu/astr162/lect/energy/temp-press.html

The behavior of gases in most (but not all) cases in astronomy is well approximated by a simple set
of rules and equations called the Ideal Gas Law. This law embodies much of our experience with
gases under everyday conditions. For example, that if the volume is held constant, the pressure
increases if the temperature increases. The ideal gas laws ensure us that the temperture in the
center of stars will be quite high, and the kinetic theory of gases implies that these high
temperatures mean that high velocity collisions are more likely between ions in the plasma.

Here are two java applets illustrating the ideal gas law and the kinetic theory of gases.

Java Applet: Ideal Gas Law
Java Applet: Maxwell Velocity Distribution

The Energy Window for Nuclear Reactions

The Coulomb barrier for charged particle reactions and the distribution of velocities implied by
the kinetic theory of gases imply that there is a narrow range of energies where nuclear reactions
involving charged nuclei occur in stars. This window is called the Gamow window, and is illustrated
schematically in the following image.

The Gamow window for charged-particle reactions

The peak is the product of the two curves decreasing in opposite directions: The probablility for
penetrating the Coulomb barrier goes down rapidly with decreasing energy (the curve marked
"barrier penetration"), but at a given temperature the possibility of having a particle of high
energy (and therefore high velocity) decreases rapidly with increasing energy (the red curve).

The sum of these opposing effects produces an energy window for the nuclear reaction: only if the
particles have energies approximately in this window can the reaction take place. This places very
strong constraints on the charged-particle reactions responsible for producing fusion energy in
stars.

 Next    Back    Top    Home    Help
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tables used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the

strangeness is conserved, then it is sufficient to impose the vanishing of the total strangeness for ther-

mal densities at chemical FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently [5] the baryonic charge and isospin conservation laws should not

be imposed to fit the hadron multipllicities since they lead to unphysically huge FO volumes. Therefore,

in this work for the data at given energy of collision we use the following fitting parameters: temperature
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that such a procedure is completely consistent with fitting the hadron multiplicities instead of hadron yield

ratios [5], the main difference is only that to fit the hadron multiplicities one has to use the chemical FO

volume V as an additional parameter. As it was explained earlier the global fitting parameters are the

hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In addition, to

demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor into

simulations. Then one should expect some minor problems with the description of multi-strange baryons.
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Wide Resonance Sharpening and 
Enhancement Near Threshold

definition of the width for the function f(x) = Θ(x) Const exp [−b x], one obtains the
temperature dependent resonance effective width near the threshold as

ΓN
k (T ) " ln(2)

1
T −

βk
σk

≡ ln(2)
1
T −

1
T+

k

, (15)

since for such a distribution function f(x) one gets f(ln(2)/b) = f(0)/2. Note that in
evaluating (15) we neglected the additional m1.5-dependence in (14), but one can readily
check that numerically such a correction is negligible. The rightmost column in Table
1 demonstrate that Eq. (15), indeed, provides an accurate estimates for T < T+

k . The
results of Table 1 also justify the usage of σ-meson and the field-theoretical models based
on the well known σ-model for temperatures well below T+

σ " 92 MeV. Of course, the
present approach which is developed for the chemical FO stage, when the inelastic reac-
tions except for resonance decays are ceased to exist, cannot be applied for earlier stages
of heavy ion collisions. However, here we would like to stress that an inclusion of the
large width of σ-meson in the field-theoretical models of the strongly interacting matter
equation of state is very necessary. From the above analysis one can see that the large
width inclusion can generate some new important physical effects like the wide resonance
sharpening in a thermal media.

Figure 4: Temperature dependence of the mass distribution fk(m)/φ(mσ, T ) (in units of
1/MeV, see Eq. (14)) for σ-meson with the mass mσ = 484 MeV, the width Γσ = 510
MeV [16] and MTh

σ = 2 mπ " 280 MeV. In the left panel the short dashed curves below
the 2 pion threshold (vertical line) show the mass attenuation for different temperatures.
From the right panel of the same plot one can see the effect of wide resonance sharpening
near the threshold. The σ-meson effective width shown in the right panel is Γeff

σ (T =
50 MeV) " 62.5 MeV, Γeff

σ (T = 55 MeV) " 71.5 MeV and Γeff
σ (T = 60 MeV) " 82.5

MeV.

From Fig. 5 one can see that the enhancement of the resonance degeneracy can be,
indeed, huge for wide (Γ ≥ 450 MeV) and medium wide (Γ " 300−400 MeV) resonances.
This effect naturally explains the strong temperature dependence of hadronic pressure (1)
at chemical FO, which in its turn generates the power-like mass spectrum of baryons (11).
Clearly, the same is true for the mesonic pressure (2) and mesonic mass spectrum in a
thermal media. However, we believe that a detailed study of such a phenomenon requires
a special investigation.
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strangeness is conserved, then it is sufficient to impose the vanishing of the total strangeness for ther-

mal densities at chemical FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently [5] the baryonic charge and isospin conservation laws should not

be imposed to fit the hadron multipllicities since they lead to unphysically huge FO volumes. Therefore,

in this work for the data at given energy of collision we use the following fitting parameters: temperature

T , baryonic chemical potential µB and the chemical potential of the third projection of isospin µI3. Note

that such a procedure is completely consistent with fitting the hadron multiplicities instead of hadron yield

ratios [5], the main difference is only that to fit the hadron multiplicities one has to use the chemical FO

volume V as an additional parameter. As it was explained earlier the global fitting parameters are the

hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In addition, to

demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor into

simulations. Then one should expect some minor problems with the description of multi-strange baryons.
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the strangeness

is conserved, then it is sufficient to impose the vanishing of the total strangeness for thermal densities at chemical

FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently

[5] the baryonic charge and isospin conservation laws should not be imposed to fit the hadron multipllicities since

they lead to unphysically huge FO volumes. Therefore, in this work for the data at given energy of collision we

use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

of the third projection of isospin µI3. Note that such a procedure is completely consistent with fitting the hadron

multiplicities instead of hadron yield ratios [5], the main difference is only that to fit the hadron multiplicities one

has to use the chemical FO volume V as an additional parameter. As it was explained earlier the global fitting

parameters are the hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the strangeness

is conserved, then it is sufficient to impose the vanishing of the total strangeness for thermal densities at chemical

FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently

[5] the baryonic charge and isospin conservation laws should not be imposed to fit the hadron multipllicities since

they lead to unphysically huge FO volumes. Therefore, in this work for the data at given energy of collision we

use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

11
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].

1. Results are shown for extreme case, 
but formula 

works well for other parameterizations! 

2. Source of resonance distribution 
has many similarities with famous
Gamov window for thermonuclear 

reactions of charged particles! 

Dashed area: other 
distribution 
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].

8/30/12 1:14 AMTemperature and Pressure in Stars

!"#$%&'$ 2 &( 2http://csep10.phys.utk.edu/astr162/lect/energy/temp-press.html

The behavior of gases in most (but not all) cases in astronomy is well approximated by a simple set
of rules and equations called the Ideal Gas Law. This law embodies much of our experience with
gases under everyday conditions. For example, that if the volume is held constant, the pressure
increases if the temperature increases. The ideal gas laws ensure us that the temperture in the
center of stars will be quite high, and the kinetic theory of gases implies that these high
temperatures mean that high velocity collisions are more likely between ions in the plasma.

Here are two java applets illustrating the ideal gas law and the kinetic theory of gases.

Java Applet: Ideal Gas Law
Java Applet: Maxwell Velocity Distribution

The Energy Window for Nuclear Reactions

The Coulomb barrier for charged particle reactions and the distribution of velocities implied by
the kinetic theory of gases imply that there is a narrow range of energies where nuclear reactions
involving charged nuclei occur in stars. This window is called the Gamow window, and is illustrated
schematically in the following image.

The Gamow window for charged-particle reactions

The peak is the product of the two curves decreasing in opposite directions: The probablility for
penetrating the Coulomb barrier goes down rapidly with decreasing energy (the curve marked
"barrier penetration"), but at a given temperature the possibility of having a particle of high
energy (and therefore high velocity) decreases rapidly with increasing energy (the red curve).

The sum of these opposing effects produces an energy window for the nuclear reaction: only if the
particles have energies approximately in this window can the reaction take place. This places very
strong constraints on the charged-particle reactions responsible for producing fusion energy in
stars.

 Next    Back    Top    Home    Help

The main difference is due threshold 
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Finite Width Model of QG Bags

K.A.B., V.K. Petrov, G.M. Zinovjev, Europhys. Lett. (2009) 85
Finite width model of QG bags predicts that 7

Γ0(T ) !






400 MeV , if T = 0 MeV ,

800 MeV , if T ! 90 MeV ,

1400 MeV , if T ! 170 MeV

The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the strangeness

is conserved, then it is sufficient to impose the vanishing of the total strangeness for thermal densities at chemical

FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently

[5] the baryonic charge and isospin conservation laws should not be imposed to fit the hadron multipllicities since

they lead to unphysically huge FO volumes. Therefore, in this work for the data at given energy of collision we

use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

of the third projection of isospin µI3. Note that such a procedure is completely consistent with fitting the hadron

multiplicities instead of hadron yield ratios [5], the main difference is only that to fit the hadron multiplicities one

has to use the chemical FO volume V as an additional parameter. As it was explained earlier the global fitting

parameters are the hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In

addition, to demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor

into simulations. Then one should expect some minor problems with the description of multi-strange baryons.

III. RESULTS

The recent comprehensive analysis [5] performed for different hard-core radii of all mesons Rm and all baryons

Rb clearly showed us that the good description of the data can be achieved for many pairs of these radii. However,

the ratios are more stable during the fitting, if Rm = 0.3 fm and Rb = 0.5 fm. Right these values of hard-core

radii were fixed and then we fitted the data by the χ2/dof -criterion for different values of the pion Rπ and kaon

RK hard-core radii taken below 0.5 fm each. The minimal value of χ2/dof ! 1.018 for the energies in the

range √
sNN = 2.7, 3.3, 3.8, 4.3, 4.9, 6.3, 7.6, 8.8, 12, 17, 130, 200 GeV (for details see below) was obtained

for Rπ = 0 fm and RK = 0.35 fm.

Since in the present approach there is no principle difference between fitting the absolute hadron yields at

mid-rapidity or their ratios, we prefer to fit ratios in order to reduce the volume of numerical efforts. In our choice

of the data sets we basically followed Ref. [1]. Thus, at the AGS energy range of collisions (√sNN = 2.7 − 4.9

GeV) the data are available for the kinetic beam energies from 2 to 10.7 AGeV. For the beam energies 2, 4, 6 and

8 AGeV there are only a few data points available: the yields for pions [22, 23], for protons [24, 25], for kaons
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Abstract: We analyze the asymptotic behavior of Regge trajectories of non-strange
mesons. In contrast to an existing belief, it is demonstrated that for the asymptotically
linear Regge trajectories the width of heavy hadrons cannot linearly depend on their mass.
Using the data on masses and widths of ρJ−− , ωJ−− , aJ++ and fJ++ mesons for the spin
values J ≤ 6, we extract the parameters of the asymptotically linear Regge trajectory
predicted by the finite width model of quark gluon bags. As it is shown the obtained pa-
rameters for both sets of data are consistent with the cross-over temperature determined by
the lattice QCD simulations at vanishing baryonic density and with the kinetic freeze-out
temperature of early hadronizing particles found in relativistic heavy ion collisions at and
above the highest SPS energy.
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of  leading Regge trajectories for mesons
with the spins J < 7 

Finite width model was successfully verified on a variety of lattice QCD
thermodynamics data

K.A.B., V.K. Petrov, G.M. Zinovjev, PRC (2009) 79

K.A.B., E,G. Nikonov, A.S. Sorin, G.M. Zinovjev, JHEP02 (2011) 059

13



Application to Quark Gluon Bags
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].
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is conserved, then it is sufficient to impose the vanishing of the total strangeness for thermal densities at chemical

FO, i.e. to determine the strange chemical potential µS from the equation
N∑

i=1
nS

i = 0. As it was shown recently

[5] the baryonic charge and isospin conservation laws should not be imposed to fit the hadron multipllicities since

they lead to unphysically huge FO volumes. Therefore, in this work for the data at given energy of collision we

use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

of the third projection of isospin µI3. Note that such a procedure is completely consistent with fitting the hadron

multiplicities instead of hadron yield ratios [5], the main difference is only that to fit the hadron multiplicities one

has to use the chemical FO volume V as an additional parameter. As it was explained earlier the global fitting

parameters are the hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In

addition, to demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor

into simulations. Then one should expect some minor problems with the description of multi-strange baryons.

III. RESULTS

The recent comprehensive analysis [5] performed for different hard-core radii of all mesons Rm and all baryons

Rb clearly showed us that the good description of the data can be achieved for many pairs of these radii. However,

the ratios are more stable during the fitting, if Rm = 0.3 fm and Rb = 0.5 fm. Right these values of hard-core

radii were fixed and then we fitted the data by the χ2/dof -criterion for different values of the pion Rπ and kaon

Thus, the lower T, the sharper is bag!

However, the finite width model predicts a huge suppression 

for T < 80 MeV => one can hope that for T = 90-120 MeV 

the QG bag width can be between 60 and 160 MeV! 

=> Perhaps the QG bags can be observed as sharp resonances
with mass about 2.5 GeV which are absent in Particle Data Group

=> Such a hypothesis can be verified at NICA energies!
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Further Estimates
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use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

of the third projection of isospin µI3. Note that such a procedure is completely consistent with fitting the hadron

multiplicities instead of hadron yield ratios [5], the main difference is only that to fit the hadron multiplicities one

has to use the chemical FO volume V as an additional parameter. As it was explained earlier the global fitting

parameters are the hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In
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is conserved, then it is sufficient to impose the vanishing of the total strangeness for thermal densities at chemical

FO, i.e. to determine the strange chemical potential µS from the equation
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[5] the baryonic charge and isospin conservation laws should not be imposed to fit the hadron multipllicities since

they lead to unphysically huge FO volumes. Therefore, in this work for the data at given energy of collision we

use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

of the third projection of isospin µI3. Note that such a procedure is completely consistent with fitting the hadron

multiplicities instead of hadron yield ratios [5], the main difference is only that to fit the hadron multiplicities one

has to use the chemical FO volume V as an additional parameter. As it was explained earlier the global fitting

parameters are the hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In

addition, to demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor

into simulations. Then one should expect some minor problems with the description of multi-strange baryons.

III. RESULTS

The recent comprehensive analysis [5] performed for different hard-core radii of all mesons Rm and all baryons

Rb clearly showed us that the good description of the data can be achieved for many pairs of these radii. However,

the ratios are more stable during the fitting, if Rm = 0.3 fm and Rb = 0.5 fm. Right these values of hard-core

Due to Boltzmann factor it is better to keep threshold mass to 2.5 GeV

=> For T = 90 MeV the necessary condition for       is satisfied for L < 6
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The masses, the widths and the strong decay branchings of all hadrons were taken from the particle tables

used by the thermodynamic code THERMUS [21].

The strange charge conservation completes the list of equations used. Since in strong decays the strangeness

is conserved, then it is sufficient to impose the vanishing of the total strangeness for thermal densities at chemical

FO, i.e. to determine the strange chemical potential µS from the equation
N∑
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nS

i = 0. As it was shown recently

[5] the baryonic charge and isospin conservation laws should not be imposed to fit the hadron multipllicities since

they lead to unphysically huge FO volumes. Therefore, in this work for the data at given energy of collision we

use the following fitting parameters: temperature T , baryonic chemical potential µB and the chemical potential

of the third projection of isospin µI3. Note that such a procedure is completely consistent with fitting the hadron

multiplicities instead of hadron yield ratios [5], the main difference is only that to fit the hadron multiplicities one

has to use the chemical FO volume V as an additional parameter. As it was explained earlier the global fitting

parameters are the hard-core radii of pions Rπ, kaons RK, baryons Rb and that one for all other mesons Rm. In

addition, to demonstrate the pure effect of the radii variation we do not include any strangeness suppression factor

into simulations. Then one should expect some minor problems with the description of multi-strange baryons.

III. RESULTS

The recent comprehensive analysis [5] performed for different hard-core radii of all mesons Rm and all baryons

Rb clearly showed us that the good description of the data can be achieved for many pairs of these radii. However,
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Thanks for your attention!

15


