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arXiv:1207.5999 (Invited Review Article)

interesting for us :

EoS for finite baryonic density, from Taylor expansion and imaginary µ

See also:

O. Philipsen “Status of the QCD phase diagram from lattice calculations”

arXiv:1111.5370 (Lecture at HIC for FAIR workshop and XXVIII Max

Born Symposium, Wroclaw, May 19-21, 2011)

O. Philipsen “Lattice QCD at non-zero temperature and baryon density”

arXiv:1009.4089 (Lectures given at the Summer School on “Modern per-

spectives in lattice QCD”, Les Houches, August 3-28, 2009)



1. Introduction

Hypothetic phase diagram of QCD (from Wikipedia)

after Ph. de Forcrand arXiv:1005.0539



Crossover vs. First Order Transition in the Phase Diagram of QCD

from Anyi Li arXiv:1002:4459



This is a School of Dense Matter, not Lattice Gauge Theory.

You will not hear much about the technical details of LGT.

I will concentrate on central questions: “meta-problems”

This talk is dealing with relativistic matter with a prescribed

number of particles carrying particular charge (baryonic charge)

in a grand canonical formalism.

Surprisingly, this is related to a number of difficult poblems,

as soon as such problems are attacked within Lattice Gauge

Theory, known under the names :

• “sign problem”

• “complex action”

• “complex weights”



While the first “problems” seem to describe the technical side

of the problem, the following are closer to the physical side :

• “average phase factor”; its vanishing in limV→∞ discourages

the so-called “phase quenching approach” for big volumes

• “overlap problem”; a real incompatibility of configurations

• “silver blaze problem” (T. D. Cohen after “Sherlock Holmes”)

The latter is a genuine physical miracle witnessing big cancellations:

“At low temperature, there are no observables depending on the

chemical potential below some threshold (onset) value µonset = O(mp/3).”

The “premature onset” µonset ≈ mπ/2 (with the “Glasgow method”)

has ruled out the first serious attempt to cope with the problem.



Where the quenched and phase-quenched simulation fails

from Ph. de Forcrand arXiv:1005.0539

T

mum
N /3m /2

π< +>= 0/
severe

sign problem

0 π



This negative result points out, that some kind of arithmetic

cancellation must take care to reproduce the right physics.

Let me explain how (and where) this comes about.

At the same time, I am trying to give a mini-review of

progress in the field addressed to non-experts in LGT,

while trying to touch most of the ideas presently around.

My own lattice activity was not in finite density lattice field

theory (rather in confinement mechanisms, vacuum structure

and topology). Sorry, my apologies ! This is mostly a compilation !

However, I have contributed to our field when it was in infancy.

This was when CERN SPS was preparing for Heavy Ion collisions

(NA35, 1986/1987). From 1994 really heavy ions (Pb) at NA49.



• Dynamical Fermions At Nonzero Chemical Potential And Tempera-

ture: Mean Field Approach, E.-M. I., J. Kripfganz (Leipzig U.)

Sept. 1984, published in Z. Phys. C29 (1985) 79-82

• QCD Thermodynamics and Non-Zero Chemical Potential, E.-M. I.,

J. Kripfganz (Leipzig U.), in: “Hadronic Matter under Extreme

Conditions”, Kiev, Naukova Dumka 1986, part 1, p. 153

Proceedings of a workshop organized in Kiev by Gennady Zinovjev

(that did not take place because of the Chernobyl desaster)

• Complex Langevin Simulation Of Chiral Symmetry Restoration At

Finite Baryonic Density, E.-M. I. (ICTP, Trieste). Jul. 1986, published

in Phys. Lett. B181 (1986) 327



The paper



The result



There are Yang-Mills theories, whose gauge groups do not

create a sign problem :

for example

• SU (2)

• G2 (worked on mainly by Maas, Wellegehausen [Jena group])

• SO(2N)

Also : not all kinds of chemical potentials create a sign problem !



"��������$��� �
		���6�
�7��-	�����������	(��
����$'��2�"

����
�����
��(�#	�)��$*���������
���(�#	�+!,�(�������� ����������������-���/�������������
�-��0



Finite baryon density in standard Statistical Mechanics,

calculations at finite baryonic density look innocent :

Grand canonical density operator (T̂r = trace in Hilbert space)

ρ = e−
1
T (H−µiNi) , Z = T̂r ρ , T̂r (. . .) =

∑

n

〈n|(. . .)|n〉

Everything is real valued: energy eigenvalues, partition function,

extra weighting according to the number of particles.

Usual observables as thermal averages :

〈O〉 = Z−1 T̂r (ρ O)

obtained with the partition function :

Z = T̂r (ρ)



One can directly derive the thermodynamic functions from the partition

function Z(T, V, µ) :

F = − T lnZ free energy

p =
∂

∂V
(T lnZ) pressure

S =
∂

∂T
(T lnZ) entropy

N i =
∂

∂µi
(T lnZ) average particle number

E = −p V + T S + µi N i energy

Useful for homogeneous phases : densities of thermodynamical functions

f =
F

V
, p = −f, s =

S

V
, ni =

N̄i

V
, ǫ =

E

V



in appropriate units of T 4, T 3 or T 2

p

T 4
=

1

V T 3
lnZ pressure p

ǫ

T 4
= − 1

V T 4

∂

∂(1/T )
lnZ energy density ǫ

nq
T 3

=
1

V T 3

∂

∂(µq/T )
lnZ quark density nq

χq
T 2

=
1

V T 3

∂2

∂(µq/T )2
lnZ =

T

V

(
〈N 2

q 〉 − 〈Nq〉2
)

quark number susceptibility χq

Once the partition function is known from another formalism

(say, from lattice calculation) all these relations remain valid.



Here, in the standard quantum statistical formalism, the addition

of any phase factor would eventually also lead to problems similar

to those encountered within the lattice formalism.

Example :

Imaginary chemical potential µB = iηB ; this looks a bit artificial !

Periodicity ηB/T → ηB/T + 2π is obvious

(or later ηq → ηq + 2π
3 for quarks).

Later, just this case will turn out to be the “easy case”, and this

“detour” is actually taken, hoping that analytical continuation

gives the right answer for the real case of real µ.

ρ = e−
1
T (H−iηqNq)



• The special problems are originating in the lattice technique !

• We are pampered by decades of lattice simulations giving us

all results (almost) for free (due to the ab initio style of calculation).

• We were used to blindly rely on importance sampling techniques.

However, sometimes variance reduction tricks have been necessary !

• Compared to this comfortable situation, finite baryonic density

creates a complicated situation. It requires really fresh thought !

Gives impulses for developing new algorithms/data handling !

Other chemical potentials (isospin, chiral chemical potential etc.)

are (relatively) harmless.

CP -violation, so-called Θ-vacuum effects, are similarly challenging.

This makes life less mundane, more interesting !



What, after all, is the advantage of the lattice ?

• It gives a characterization of configurations by specifying

a finite number of degrees of freedom (suitable for simulation).

• We have many methods to our disposal only on the lattice,

two of them assisting each other at finite baryonic density !

1. Importance sampling

• Let an algorithm generate a sequence of configurations, with

a frequency of occurrence proportional to a theoretically

justified weight (“frequentionist’s probablity”). This works

only if the weight is real/positive (heatbath, Metropolis and Co.)

• Take the arithmetic average of the observable of interest.

• Evaluate the error of deviation from the theoretical average.



2. Strong coupling expansion

• Known from statistical mechanics as HTE.

• Expand the (pairwise) interaction of spins exp
(

1
TSxSy

)

in orders of 1/T (HTE = high temperature expansion).

• Would not be possible without discretization !

• Because there are so many pairs the system, it seems

hopeless to keep the overview over all generated terms.

• But integration/summation over spins erases most of the

terms, leaving only terms with the structure of closed loops.

• Use diagrammatic/loop/worm algorithms (which perform

– on a lattice – discrete updates of loops).



Moral :

“If importance sampling does not work in one representation, use

strong coupling methods to go over to another representation, where

importance sampling works again, however in other variables and

in another environment.”

This is sometimes called

“Duality transformation” (from one representation to the other.)



Most lattice results achieved within standard importance sampling :

• hadron eigen energies (inserting sources, relying on ∆τ → ∞)

• structure of the hadrons (inserting sources plus probes,

separated by ∆τ → ∞ from the sources [relaxation !] )

• structure of extended systems (hadronic matter at different

temperatures) calculated in all phases within the same set-up

• no prior knowledge needed about the “relevant” degrees of freedom

Limitations only in resources, that are easy/difficult to overcome :

• finite volume Ni → ∞ (i = 1, 2, 3)

• finite discretization (lattice spacing a→ 0)

• non-physical fermion and pion masses (mq ∝ m2
π → phys., hardest !)



2. A Look inside Lattice Gauge Theory

• Path Integral Approach : Euclidean vs. Minkowskian

• Briefly about Gauge Fields

• Coupling Fermions to Gauge Fields

• Order Parameters for Finite-Temperature Transitions



2. 1. Path Integral Approach : Euclidean vs. Minkowskian

Success of Lattice Field Theory, in particular Lattice Gauge Theory,

rests on the path integral approach.

The whole path integral story is full of sign problems !

Everything begins with the Lagrangian approach.

Consider first 0 + 1 dimensions : Quantum Mechanics :

Path integral in quantum mechanics based on the real time

evolution operator

〈
q′
∣∣∣e−

i
~
Ĥ T
∣∣∣ q
〉

= 〈q′ |U (T, 0)| q〉



The Feynman path integral was first proposed to evaluate this as

〈q′|U (T, 0)|q〉 =

∫
D[q]

(T,q′)
(0,q) e

i
~
S[q]

with the “real time” action in the exponent (M = Minkowski)

SM [q] =

∫ T

0

d t
(m

2
q̇2 − V (q(t))

)
=

∫ T

0

L[q(t), q̇(t)]

D[q]
(T,q′)
(0,q) = measure of trajectories running from (t = 0, q) to (t = T, q′) .

Discretization → introduce a time lattice (with lattice spacing a = T
N
)

t0 = 0, . . . , tn = na , . . . , tN−1 = (N − 1)a, tN = Na = T

Thus, it is possible to give a precise meaning to the path integral.



〈q′|U (T, 0)|q〉 =

∫
dqN−1 · · · dq1 〈q′|T |qN−1〉〈qN−1|T |qN−2〉 · · · 〈q1|T |q〉

=

∫
D[q]

(T,q′)
(0,q) e

i
~
S[q]

with polygon-shaped, “zig-zag” trajectories and a discretized action :

〈qn+1|T |qn〉 = N e−
ia
2~

V (qn+1) e
im
2a~ (qn+1−qn)2 e−

ia
2~

V (qn)

The product of the “transfer matrices” 〈qn+1|T |qn〉 is not usable

as a numerically manageable measure (it is a complex number !).

The discretized action S[q] is real-valued, but the exponent purely

imaginary:

i

~
S[q] = ln

(
N∏

n=1

〈qn|T |qn−1〉
)



Considering the integral over each of the qi, it is over a rapidly

oscillating, complex valued integrand.

In this stage the path integral is completely governed (i.e. obscured)

by the “complex weight problem”.

(I put from now ~ = 1.)

Rescue : the Wick rotation provides a solution !

Do an analytical continuation of the time step a to imaginary time:

a = |a|e−i φ φ : 0 → π

2

For all φ ∈ (0, π/2] the real part of the exponent iS[q] is non-vanishing

and negative (responsible for suppressing the measure far away from

the classical trajectories). The “time evolution” is now “diffusive”.



With this analytical continuation to φ = π/2, the discretized

path integral takes the form

〈q′|UI(T, 0)|q〉 =

∫
D[q]

(T,q′)
(0,q) e −SI [q]

SI [q] = |a|
N∑

n=1

[
m

2 |a|2 (qn − qn−1)
2 +

1

2
V (qn) +

1

2
V (qn−1)

]

This is the discrete approximation of the Euclidean action :

SE[q] =

∫ T

0

d τ
(m

2
q̇2 + V (q(τ ))

)
=

∫ T

0

d τLE[q(τ ), q̇(τ )]

Now, the discretized path integral is convergent !



Matrix elements like the time-ordered product of Heisenberg

operators in real time

〈T [q̂(t1) · · · q̂(tl)]〉
can be obtained from the path integral averages (commuting

numbers do not need to be explicitly ordered in [any] time !)

〈q′|T [q̂(τ1) · · · q̂(τl)]|q〉|QM = 〈q(τ1) · · · q(τl)〉 =

∫
D[q]

(q′,T )
(q,0) q(τ1) · · · q(τl) e −SE [q]

in imaginary time by analytical continuation back to φ = 0.

Very important advantage/convenience of this formulation :

“Euclidean correlation functions can be blindly calculated by

importance sampling due to the positive measure of trajectories.”

Analysis and interpretation then are the harder part of labor !



More about the Euclidean measure :

• The form of the measure is readable from the partition function,

i. e. from the Euclidean action.

• Without interaction, it becomes the Wiener measure well-known

from Brownian motion.

• For thermal averages (describing quantum statistics) the

Euclidean form is just what is needed !

• For thermodynamic functions no analytical continuation is

needed, all is derivable from the partition function.

• However: discerning the spectral density of a particle (giving

mass and width) or current correlator (transport coefficient)

requires analytical continuation (“Maximal Entropy Method”).



The issue of boundary conditions of the trajectories :

Density matrix is now given in the coordinate representation :

〈q′|ρ|q〉 =
1

Z
〈q′|e− 1

T Ĥ|q〉

= N
∫
D[q]

(q′,1/T )
(q,0) e −SE [q]

Taking the trace
∫
dq〈q|ρ|q〉 implies integration over periodic

trajectories (with the identification q′ = q) at t = 0 and t = 1/T = β.



Single-time expectation values obtained by importance sampling :

1. sample periodic trajectories according to the measure

2. evaluate for each trajectory O(q(τ )) at fixed time τ = 0

3. average this “observable” over trajectories

In order to improve statistics, in step 2 one can first average O(q(τ ))

over τ ∈ [0, 1/T ].

This defines a “center of gravity value” O of O along the trajectory.

Averaging O instead of O(q(0)) over trajectories is equivalent due to

the cyclic invariance of the trace (but variance-reduced !).



All this is applicable also for scalar field theories (including

charged scalars, with complex field) given in Minkowski space :

S[φ] =
∑

x

[
1

2
|φx+4̂ − φx|2 −

3∑

i=1

1

2
|φx+î − φx|2 −

m2

2
|φx|2 − V (|φx|)

]

Upon Wick rotation, only the potential part changes sign in the

Euclidean version of action :

SE[φ] =
∑

x

[
1

2
|φx+4̂ − φx|2 +

3∑

i=1

1

2
|φx+î − φx|2 +

m2

2
|φx|2 + V (|φx|)

]

These actions (both in Minkowski or Euclidean space) are real-valued.

It seems, the “oscillatory integrand” is overcome by going over to

Euclidean space.



Can the “complex measure problem” never reappear ?

This will happen when one tries to translate the finite charge

density constraint into the Lagrangian/Path Integral formalism

(see this later for the φ4 theory).

Thus, the “complex measure” or “silver blaze problem” is not

at all restricted to QCD !



2. 2. Briefly about Gauge Fields

If gauge invariance enters the game, such that the action should be

invariant under transformations φx → gxφx with gx ∈ G (gauge group),

that may be independently chosen at each site x. One needs to introduce

“transporters” Uxµ between neighboring sites (to form covariant

derivatives, resp. covariant finite difference quotients)

SE[φ] =
∑

x

[
1

2
|Ux,4 φx+4̂ − φx|2 +

3∑

i=1

1

2
|Ux,i φx+î − φx|2 +

m2

2
|φx|2 + V (|φx|)

]

Transporters have to transform under gauge transformations accordingly

Ux,µ → gx Ux,µg
†
x+µ̂

This clarifies how transporters are defined in terms of the field Aµ:

Ux,µ = eiaAx+µ̂/2,µ



Labelling of links and the formation of strings and loops

(b)(a)

U  (x,y)x

U  (x,y)y yU  (x+4,y)

xU  (x,y+3)



Construction of a plaquette



The gauge field acquires an own action: standard example is Wilson’s

action of gluons (by expressing Fµν = Aµ;ν − Aν;µ + [Aµ, Aν] as a loop)

SG[U ] =
∑

x

∑

1≤µ<ν≤4

β

(
1 − 1

3
Re tr Up

)
≈
∫ 1/T

0

dτ

∫

V

d3x
1

2
Tr Fµν(x)Fµν(x)

Here Up = Ux,µ Ux+µ̂,ν U
†
x+ν̂,µ U

†
x,ν (4 “links”) is the elementary plaquette.

Lattice gauge coupling β and continuum one are related by β = 2N/g2.

Since it is bosonic, we impose periodic boundary conditions in all

four directions, Uµ(τ,x) = Uµ(τ +Nτ ,x), Uµ(τ,x) = Uµ(τ,x +Ns).



Define the transfer matrix between two times slices τ and τ + 1 :

T [Ui(τ + 1), Ui(τ )] = 〈Uτ+1|e−aH|Uτ〉 =

∫
DU0(τ ) exp−L[Ui(τ + 1), U0(τ ), Ui(τ )]

Here the action is written grouped in two subsequent timeslices :

SG =
∑

τ

L[Ui(τ + 1), U0(τ ), Ui(τ )]

Similar to the kinetic/potential splitting in the QM case

L[Ui(τ + 1), U0(τ ), Ui(τ )] =
1

2
L1[Ui(τ + 1)] +

1

2
L1[Ui(τ )] + L2[Ui(τ + 1), U0(τ ), Ui(τ )]

with

L1[Ui(τ )] = − β

N

∑

p(τ)

Re Tr Up

containing all spacelike plaquettes and links at fixed τ ,

(“potential energy”, no double-counting) and the inter-slice action ....



L2[Ui(τ + 1), U0(τ ), Ui(τ )] = − β

N

∑

p(τ,τ+1)

Re Tr Up

containing all timelike plaquettes and links spanned between timeslices

at subsequent times τ and τ + 1 (this is the “kinetic energy”).

Partition function :

Z =

∫ Nτ∏

τ=1

(DUi(τ,x) T [Ui(τ ), Ui(τ − 1)]) = T̂r(TNτ ) = T̂r(e−NτaH)

Periodic boundary condition Ui(Nτ) = Ui(0) in the temporal direction

warrants, that the same (!) states |n〉 = |Ui〉 are taken on the time

slices 0 and Nτ , in order to take the trace.

Again, the inverse temperature is 1/T = aNτ , the temporal length.



Periodicity in spatial directions is the most unbiased option for

imitating a proper “environment” for the finite system (made out

of mirror systems of the actual system, which is the “central” box).

This construction is sometimes abandoned for particular purposes

(e.g. mimicking a cold environment for the QGP [B. A. Berg et al.]).

for instance: Bernd A. Berg and Hao Wu arXiv:1109.0599

Thermal expectation value of an observable (some operator O)

〈O〉 = Z−1T̂r(e−
H
TO) = Z−1

∑

n

〈n|TNτO|n〉 =

∑
n〈n|O|n〉 e−aNτEn∑

n e−aNτEn
,

otherwise calculated in a (unknown !) basis, can now alternatively

be obtained by inserting a function O(Ui(τ )) related to some time

slice (or averaged over all time slices) into the path integral.



Zero temperature ? This is now not more than a special case !

T = 0 physics is recovered in the limit Nτ → ∞,

or, at least, for Nτ ≥ Ni i = 1, 2, 3.

Why the lattice approach will not be given up :

This calculational scheme is so attractive, such that hard work

is going on with the aim not to abandon it, despite the problems

encountered on the lattice, as soon as finite density is under study.

One should rather try to exploit all the specific opportunities of

lattice gauge field theory, which seem to be not yet fully explored !



2. 3. Coupling Fermions to Gauge Fields

Adding fermions (at T = 0 or T > 0) means inclusion of a suitable

bilinear action into the path integral

SF =
∑

x,y

ψ̄(x)Mxy(mf)ψ(y)

There are many competing choices to write the fermion action.

The fields are Grassmann fields. The integral can be formally done,

• with periodic boundary conditions in three spatial directions

• with antiperiodic boundary condition in the temporal direction.

In contrast to a free complex bosonic field with a quadratic

action
∑

xy φ
∗(x)Qxy φ(y) and periodic boundary conditions, one gets



• detM(mf) (spectrum taken with mixed antiperiodic/periodic b.c.)

in the case of fermions, whereas one would get the formal result

• (detQ)−1 (spectrum taken with periodic b.c.) in case of bosons

With fermions included, the partition function is now

Z(Ns, Nτ ; β,mf) =

∫
DU

Nf∏

f=1

detM(mf) e−Sg[U ]

Uµ(τ,x) = Uµ(τ +Nτ ,x) ψ(τ,x) = −ψ(τ +Nτ ,x)

For example, the action for so-called “Wilson fermions” is shown here :

SWF =
1

2a

∑

x,µ,f

a4 ψ̄f(x)[(γµ − r)Uµ(x)ψf(x + µ̂) − (γµ + r)U †
µ(x− µ̂)ψf(x− µ̂)]

+ (m + 4
r

a
)
∑

x,f

a4 ψ̄f(x)ψf(x)



One minute of contemplation :

This order of nested integrations is probably the root of the sign problem.

For µ = 0 it is convenient to concentrate the fermion dynamics in a single

number, the determinant, because of possible stochastic representations

for the determinant (pseudofermions, Hybrid Monte Carlo Algorithm).

As soon as µ 6= 0, this advantage turns into a problem.

In order to illustrate possible ways out, I will give later reformulations

(in the case of of 3D bosonic models/effective field theories), where the

original sign problem (inherited from the fermion determinant) can be

overcome.

For real 4D gauge theory, people have dreamed to reverse the order of

integration : gauge degrees of freedom first, fermions later. Not easy !



2. 4. Order Parameters for Finite-Temperature Transitions

Confinement/deconfinement and chiral symmetry breaking/restoration

are intertwined for quarks (as long as they belong to the fundamental

representation of the color group).

Confinement is understood as the absence (in Nature) of free color

charges.

In Theory, this is a (somewhat abstract) property of infinitely heavy

static, spinless test charges (“heavy quarks”) to be forbidden by an

infinite (delocalized ?) amount of excess vacuum Free Energy FQ = ∞.

This property can eventually be destroyed through screening by

dynamical color charges (sea quarks, or “dense excess quarks”).

In other models (with more exotic gauge groups like G2, for example

several (say 3 of the 14) gluons can screen one fundamental quark.



This mechanism is not possible in QCD with gauge group SU (3) !

The increase of vacuum Free Energy caused by an isolated heavy quark

is defined by the Polyakov loop (is a holonomy, since the path is closed !)

P~x = T
[
Nt∏

τ=1

U~x,τ,ν=4

]

Z(N) symmetry : flip all U~x,τ,ν=4 → zU~x,τ,ν=4 at one timeslice τ = τ0

this changes (at all ~x) the Polyakov loop P~x → zP~x with z ∈ Z(N)

The local thermal expectation value :

L~x = 〈 Re tr P~x〉 =
Z(with quark at ~x)

Z(without quark)

The spatial average of it is important : this is the order parameter

L =
1

NV3

∑

~x

L~x ∝ exp

(
−FQ
T

)



Definition as an order parameter for confinement :

L = 0 confinement, Z(N) symmetry satisfied

L 6= 0 deconfinement, Z(N) symmetry broken

Also if dynamical (sea) quarks are in the model (even at T = 0)

one finds

L 6= 0

This means : Z(N) symmetry is slightly broken by quarks

Order parameter for dynamical fermions : it tests chiral symmetry

Chiral condensate (Df is the Dirac operator for quark with flavor f)

〈
(
ψ̄ψ
)
f
〉 =

1

N1N2N3Nt

∂

∂mf
lnZ =

1

4

1

N1N2N3Nt
〈 tr D−1

f 〉

∝ 〈
∑

eigenvalue i

1

iλi +m
〉 ∝ 〈

∑

eigenvalue i

2m

λ2
i +m2

〉



〈
(
ψ̄ψ
)
f
〉 ∝

∫
dλ 〈 ρ(λ) 〉 2m

λ2 +m2
f

∝ 〈 ρ(λ = 0) 〉

This is the Banks/Casher criterion in the limit m→ 0 :

“If the average spectral density of the Dirac operator vanishes

near λ = 0, this ‘gap’ signals restoration of chiral symmetry.”

Definition as an order parameter (in chiral limit m→ 0) :

lim
m→∞

〈ψ̄ψ〉 6= 0 chirally broken phase

lim
m→∞

〈ψ̄ψ〉 = 0 chirally restored phase



Other observables show dramatic signals at the phase transition,

too, although they are not “order parameters”

(i.e., never vanish just for symmetry reasons) :

• energy density ǫ

• pressure p

• trace anomaly ǫ− 3p

are signals of liberation of sub-hadronic degrees of freedom

which are “frozen” at low temperature, in the hadronic

(so-called “confinement”) phase.



The central quantity is the “trace anomaly” or “interaction measure” ,

I(T ) = ǫ(T ) − 3p(T ) = 〈T µµ〉

important because its relation to the scaling behavior of the action

I(T )

T 4
=

1

T 3V

∑

i

dbi
da

〈
∂S

∂bi

〉

|subtracted

(“subtracted” means subtraction of the same lattice expression at T = 0)

The bi(a) are parameters of different parts of the lattice action

varying with the lattice spacing a along the “line of constant physics” :

• inverse coupling β

• bare quark masses m

• chemical potential µ (later)



Then the pressure is obtained by the “integral method”

pfin
T 4
fin

− pin
T 4
in

=
1

T 3V

∫ fin

in

[
dβ

〈
∂ lnZ

∂β

〉
+ dm

〈
∂ lnZ

∂m

〉
+ dµ

〈
∂ lnZ

∂µ

〉]

as a line integral along a “line of constant physics” between two points

characterizing initial and final state in temperature (or later in the β-µ,

i.e. temperature–chemical potential plane).

Later, inside the T -µ phase diagram, each point can be characterized by

• trace anomaly (interaction measure) (ǫ− 3p)/T 4

• energy density ǫ

• pressure p

• and other thermodynamical functions.



The QCD transition at µ = 0 as function of quark masses

(Columbia plot) from arXiv:1203.5320 Petreczky

1st

0

order
2n

d 
or

de
r

PS

PS

~90MeV~~

5MeV~~

1st

order

physical point ?

u,d

c

TCP
s

O(4)

Z(2)

m

sm

m

m

m

8

crossover

8

3.0GeV~

Z(2)
 70MeV  ~  ~



The Columbia plot extended into a third direction µ : will there

be a true phase transition (critical point) for physical quark masses ?

from Ph. de Forcrand and O. Philipsen hep-lat/0607017
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The pressure (left) versus T/Tc for Nt = 4, 6 and 8 in pure gluodynamics.

The interaction measure of gluons (trace anomaly) (ǫ− 3p)/T 4 (right).

from Boyd et al. 1995



Polyakov loop L (left) and chiral condensate 〈ψ̄ψ〉 (right) together

with their susceptibilities show both transitions in two flavour QCD.

from Karsch et al. 2001
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The chiral condensate compared to the renormalized Polyakov loop

in full QCD from arXiv:1203.5320 Petreczky
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The chiral condensate compared to the light quark number susceptibility

in full QCD from arXiv:1203.5320 Petreczky
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The pressure : gluons only, 2 light, 2 light + 1 heavy and 3 light flavors

from Karsch, Laermann and Peikert (2000)
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3. Introducing Chemical Potentials

• Chemical Potential for Fermions

• Influence of Various µ 6= 0 on the Fermion Determinant

• Complex Action for a 4D Complex Scalar Field



3. 1. Chemical Potential for Fermions

Karsch and Hasenfratz considered this problem first in 1982.

In continuum, the operator of particle minus antiparticle number

density ψ̄(x)γ4ψ(x) is the 4-th component of a conserved vector

current ψ̄(x)γµψ(x).

Consider energy density in free case (without external gauge field).

This means : all links put Uµ = 1 , Z = detD (no integration over Uµ !)

ǫ(µ) =
1

V3
〈Ĥ〉 = − 1

V3

∂

∂β
lnZ

With β = Ntat, the energy density is obtained by differentiating ∂/∂at



ǫ(µ) = − 1

(asNs)3Nt

∂

∂at
ln detD

Naively one would be tempted to include the chemical potential

term like a mass term.

Dnm =
3∑

j=1

γj
δn+ĵ,m − δn−ĵ,m

2as
+ γ4

δn+4̂,m − δn−4̂,m

2at
+mδnm + µγ4δnm

Let’s see what the consequences would be ?

In the free case, the determinant is solvable by Fourier transform

D̃p,q =
1

V4

∑

n,m

e−ipnDnmeiqm = δp,qD̃p



D̃p =
1

at



iat
as

3∑

j=1

γj sin(pjas) + iγ4 sin(p4at) + atm + atµγ4





ln detD =
∑

p

trDirac ln D̃p

∂

∂at
ln detD|µat=const =

∑

p

trDirac

[
∂

∂at
ln D̃(p)

]

|µat=const

→ C +
∑

p

trDirac



(atD̃(q)
)−1



 i

as

∑

j

γj sin(pjas) +m









with a geometric constant

C = −4NtN
3
s /at

Putting finally at = as = a , one gets :



ǫ(µ) = C − 4

NtN 3
sa

4

∑

p

F (ap, am, aµ)

F (ap, am, aµ) =

∑3
j=1 sin2(apj) + (am)2

∑3
k=1 sin2(apk) + (am)2 + (sin(ap4) − iaµ)2

Subtract ǫ(0), go to zero temperature and to the continuum limit

1

N 3
sNta4

∑

p

→ 1

(2pi)4

∫ π

−π
d4p

ǫ(µ) − ǫ(0) = − 4

(2π)4

∫ π

−π
d4p (F (ap, am, aµ) − F (ap, am, 0))

ǫ(µ) − ǫ(0) ∝
(µ
a

)2

→ quadratic divergence with a→ 0, appearing as soon as µ 6= 0 !



If one defines the quark number density from the beginning as

the 4-th component of a U (1) Noether current on the lattice, one

directly gets the point-split form of the current, ψ̄(x)γµψ(x + µ̂) .

This dictates the timelike hopping term in the Wilson action :

− 1

2a

∑

n

(
f(aµ)(1 − γ4)Un,4δn+4̂,m + f(aµ)−1(1 + γ4)U

†
n−4̂,4

δn−4̂,m

)

For µ = 0 must hold: f(aµ) = 1, f(aµ) = 1 + aµ + O
(
(aµ)2

)
.

Time reflection positivity requires f(aµ) = 1/f(−aµ).

This uniquely leads to f(aµ) = eaµ.

Moral :

“A chemical potential must enter via the kinetic part of the

action like a fourth component A4 of an Abelian gauge field.”



For naive fermion action without gauge field :

SnaiveF [ψ̄, ψ] = a3
∑

x

[

maψ̄xψx +
1

2

4∑

ν=1

(
eµaδν,4ψ̄xγν ψx+ν̂ − e−µaδν,4ψ̄x+ν̂γνψx

)
]

With gauge fields for Kogut-Susskind (“staggered”) fermions :

SWF [ψ̄, ψ] = a3
∑

x

[
maψ̄xψx −

4∑

ν=1

ηx,νψ̄x
1

2

(
eµaδν,4Ux,νψx+ν̂ − e−µaδν,4U †

x−ν̂,νψx−ν̂
)]

With gauge fields and with the Wilson prescription for fermions :

SWF [ψ̄, ψ] = a3
∑

x

[
ψ̄xψx − κ

4∑

ν=1

(
eµaδν,4ψ̄x(r − γν)Ux,νψx+ν̂ + e−µaδν,4ψ̄x+ν̂(r + γν)U

†
x,νψx

)

(after rescaling, with κ given by mbare + 4r = 1
2κ)

“This recipe (µ = imaginary Abelian gauge field) can be applied

to all other fermion formulation (e.g. overlap fermions) as well.”



3. 2. Influence of Various µ 6= 0 on the Fermion Determinant

(a) Remark for µq = 0 (counting quarks minus antiquarks)

An important property of the Dirac operator : with µq = 0 it fulfills

γ5-hermitecity : γ5Dγ5 = D†,

which implies detD = [detD]∗. Thus the determinant is real.

“For vanishing µ the determinant is real. If the determinant

is negative for some gauge field configurations (sign problem),

this can be cured by having two (degenerate) flavors.”

(b) The γ5-hermitecity is spoiled for µq 6= 0

Multiplying a hopping term from left and right with γ5 changes

the sign of γi; this can be compensated by taking the Hermitean

conjugate, thus exchanging U and U †.



The e+aµq and e−aµq prevent this to do in the timelike hopping term.

Then, instead

γ5D(µq)γ5 = D†(−µq)

For the determinant written as function of the factor f = eaµq

γ5D(f)γ5 = D†(1/f∗)

with the consequence

detD(f) = [detD(1/f∗)]∗

This establishes real-valuedness only for f = 1/f∗.

If f is real, this means f = 1/f , in other words µq = 0 (see above).

Otherwise holds:

“For nonvanishing real baryonic µq the determinant is complex.”



A doubling of flavors (which is sometimes physically realistic)

would not render the weight factor real.

(c) Imaginary baryonic chemical potential

For imaginary chemical potential µq = iη, η real, one has

f(aµ) = f(iaη) = 1/f(iaη)∗ = 1/f(−iaη) with the consequence:

“For imaginary chemical potential the determinant is real.

Therefore, normal importance sampling is applicable ! ”

(d) Isospin chemical potential

If one has different chemical potentials for each flavor, adding

terms
∑

f µf ψ̄fγ4ψf to the Lagrangian, one can consider two

light flavors u and d with opposite chemical potential :

µu = µI and µd = −µI.



This corresponds to the isospin assignment to u and d quarks.

The Dirac operator of both flavors has block-diagonal form
(
D(µI) 0

0 D(−µI)

)

(
D(µI) 0

0 γ5D
†(µI)γ5

)

The common determinant is

det[D(µI)] det[γ5D
†(µI)γ5] = det[D(µI)] det[D†(µI)] = | det[D(µI)]|2

“For finite isospin chemical potential, the determinantal weight

factor in the presence of two flavors (opposite in isospin) is real

and positive.”



(e) Chiral (or axial) chemical potential µ5

Creates an imbalance between left handed and right handed matter

mimicking the presence of a topologically charged background field :

D(µ5) = γµDµ +m + µ5γ4γ5

[DW (µ5)]x,y = δx,y − κ
∑

i

[
(1 − γi)Ui(x)δx+î,y + (1 + γi)U

†
i (x− î)δx−î,y

]

− κ
[
(1 − γ4e

aµ5γ5)U4(x)δx+4̂,y + (1 + γ4e
−aµ5γ5)U †

4(x− 4̂)δx−4̂,y

]

with

e±aµ5γ5 = cosh(aµ5) ± γ5 sinh(aµ5)

This satifies γ5-hermitecity : γ5D(µ5)γ5 = D†(µ5)



Consequently, the determinant is real-valued !

Result : A current is induced through the chiral magnetic effect (CME)

in presence of an external magnetic field ~B acting on electrical charges e

~j =
1

2π2
µ5 e ~B

(f) Gauge group SU (2)

This group possesses only real representations.

Pauli-Gürsey symmetry : ST aS−1 = −(T a)⋆ with S = σ2

Taking S = Cγ5σ
2 and using CγµC

−1 = −γTµ , one finds

SD(µ)S−1 = D(µ⋆)⋆

For real µ = one has detD = (detD)⋆, i.e. detD = real, but not necessarily

positive (such models studied mostly by S. Hands and J. Skullerud).



3. 3. Complex Action for a 4D Complex Scalar Field

Finite charge density (finite µ) corresponds to an imaginary Abelian

gauge field also in the case of charged (complex valued) scalar fields.

The Noether current has the same point-split form.

The action of a complex scalar field is usually real-valued, but now

this is not anymore the case !

SE =
∑

x

[

κ|φx|2 + λ|φx|4 −
4∑

ν=1

(
eµaδν,4φ⋆xφx+ν̂ + e−µaδν,4φ⋆xφx−ν̂

)
]

with κ = 8 +m2.

Asymmetric hopping in positive/negative time direction.

If µ 6= 0 this scalar action is explicitly complex-valued, which makes the

Boltzmann factor not useful as probability weight in MC simulations !



The problem is overcome by using alternative degrees of freedom,

i.e. a flux representation, to be achieved by a duality transformation.

Expansion of the “dangerous ” (nearest neighbor) Boltzmann factors :
∏

x,ν

exp
(
eµ δν,4φ⋆xφx+ν̂

)
exp
(
e−µ δν,4φxφ

⋆
x+ν̂

)
=

∑

{n,n}
=




∏

x,ν

1

nx,ν!nx,ν!




(
∏

x

eµ[nx,4−nx,4]
)


∏

x,ν

(
φ⋆xφx+ν̂

)nx,ν (
φxφ

⋆
x+ν̂

)nx,ν




=
∑

{n,n}




∏

x,ν

1

nx,ν!nx,ν!




(
∏

x

eµ[nx,4−nx,4] φ ⋆x
∑
ν [nx,ν+nx−ν̂ ,ν ] φx

∑
ν [nx,ν+nx−ν̂,ν ]

)

,

From now, “configurations” are not understood as specification

of the values of the fields (as before), but as a selected set of

(integer, non-negative !) expansion powers nx,ν, nx,ν ∈ [0,∞),....



.... in other words, the multiple sum

∑

{n,n}
=
∏

x,ν

∞∑

nx,ν=0

∞∑

nx,ν=0

replaces the integral over configurations of the usual path integral,

realized in the usual Monte Carlo algorithm, which now would fail

because of the complex measure.

The complex field variables are written in polar form, φx = rx e
iθx.

Splitting the integration measure in polar coordinates one finds

for the partition function the form

Z=
∑

{n,n}




∏

x,ν

1

nx,ν!nx,ν!




(
∏

x

∫ π

−π

dθx
2π
e−iθx

∑
ν [nx,ν−nx,ν−(nx−ν̂,ν−nx−ν̂,ν)]

)

×
(
∏

x

eµ[nx,4−nx,4]
∫ ∞

0

drx r
1+
∑
ν [nx,ν+nx−ν̂,ν+nx,ν+nx−ν̂,ν ]

x e−κr
2
x−λr4x

)



The integrals over the angular part θx of the usual “configuration

space have now given rise to Kronecker deltas written as δ(n).

The integrals over the moduli |φx| (tabulated for MC) are denoted as

W (n) =

∫ ∞

0

dr rn+1 e−κr
2−λr4

The partition function now reads :

Z =
∑

{n,n}




∏

x,ν

1

nx,ν!nx,ν!




(
∏

x

δ

(
∑

ν

[
nx,ν − nx,ν − (nx−ν̂,ν − nx−ν̂,ν)

]
))

×
(
∏

x

eµ[nx,4−nx,4] W

(
∑

ν

[
nx,ν + nx,ν + nx−ν̂,ν + nx−ν̂,ν

]
))

In this form the complex phase problem is completely eliminated !

All weight factors for configurations of the n and n variables are

now real and non-negative !



One minute of contemplation :

In all the integrals giving the Kronecker delta symbols all the

non-real, non-positive contributions are hidden !

Ths way the model is “decontaminated” from the sign problem !

However, many configurations of n and n would have vanishing

weight, if the constraints enforced by the Kronecker deltas are

violated, i.e., when – at least for one site x – one has

(∇n)(x) − (∇n)(x) 6= 0.

If no intelligent update algorithm would be available, the sampling

would be hopelessly inefficient !



In the current representation the constraints mix n and n variables.

The structure of the constraints can be simplified by introducing

new variables kx,ν ∈ (−∞,∞) and lx,ν ∈ [0,∞) which are related

to the old variables by

nx,ν − nx,ν = kx,ν (net current) and nx,ν + nx,ν = |kx,ν| + 2lx,ν

The partition function turns into

Z =
∑

{k,l}




∏

x,ν

1

(|kx,ν| + lx,ν)! lx,ν!




(
∏

x

δ

(
∑

ν

[
kx,ν − kx−ν̂,ν

]
))

×
(
∏

x

eµkx,4 W

(
∑

ν

[
|kx,ν| + |kx−ν̂,ν| + 2(lx,ν + lx−ν̂,ν)

]
))

This is the suitable flux representation for the φ4 theory !



The constraints no longer mix the two types of flux variables.

Obviously only the k-fluxes (net charge) are subject to conservation

of flux, i.e., only these variables must obey the absence of divergence

(∇k)(x) =
∑

ν

(kx,ν − kx−ν̂,ν) = 0

for all sites x.

The Monte Carlo update should consist of simultaneous moves

nx,nu → n′x,ν and nx,ν → n′x,ν

such the constraints are respected. The product
∏

x

(
eµkx,4W (. . .)

)

over all sites x, where an update is attempted, is then subject to

the Metropolis check.



The geometric nature of the variables k and l makes geometric

updates possible, avoiding configurations with vanishing weight :

Worm algorithm (N. Prokof’ev and B. Svistunov)

for a self-review see arXiv:0910.1393

This way of transformation of the problem and the simulation

algorithm is similar/typical for all flux representations of spin systems,

also for Abelian gauge systems (e.g. the Abelian Z(3) Higgs model) !

(A. Schmidt and Ch. Gattringer, talk at LATTICE 2012)

Thus, in many models one can successfully avoid the sign problem !

The representation of the observables of interest differs from case to case.



A suitable algorithm for the φ4 theory is the following :

In the present model we have two different sets of variables

(integer-valued), that can be updated in alternating order :

1. step : update of lx,ν has no constraints :

simple Metropolis algorithm

• visit each link (x, ν);

• increase or decrease lx,ν by ±1 with equal probability;

• accept (or reject) the change according to the usual Metropolis

probability (the ratio of the weights of new and old configuration);

• negative lx,ν is always rejected.



2. step : update of kx,ν with account of the local constraints
∑

ν[kx,ν − kx−ν̂,ν] = 0 : by a generalization of the PS worm algorithm

• start the worm at a randomly chosen site of the lattice;

• let the worm grow by a random walk to form a chain of links: at

given position x the worm chooses randomly the next link among

the 8 links attached to x;

• for the chosen link the algorithm proposes to change the old variable

k by ±1, which is accepted (or not) through a Metropolis check;

• since at the starting point (tail) and at the head of the worm the

constraint is violated, the worm must continue until its head reaches

(“bites”) the tail;

• only then, along the closed contour of changed links, the constraints

are intact again (as before the sweep).



• A possible initial configuration for the kx,ν is to set kx,ν = 0 at

all links, a configuration that obviously satisfies the constraints.

The local weight for a variable kx,ν depends on variables that are defined

• on the link: the factorials in 1/(|kx,ν| + lx,ν)! and the contribution from

the chemical potential (before and after update);

• on the endpoints:W (fx) and W (fx+ν̂) (where again fx =
∑

ν[|kx,ν|+|kx−ν̂,ν|+
2(lx,ν + lx−ν̂,ν)]). These arguments of the factors W at the endpoints of

the link have to be updated as well (the functions W are precalculated

and tabulated).



A typical example of practical run parameters

• A full sweep includes :

– one sweep for lx,ν

– one worm growing until it bites the tail

• Number of full sweeps between measurements : 5

• Number of measurements : 500.000 to 1.000.000

• Number of additional equilibration sweeps : 25.000



Observables

n =
T

V

∂ lnZ

∂µ
=

1

N 3
s Nt

∂ lnZ

∂µ
, χn =

∂ n

∂µ
, χ ′

n =
∂ χn
∂µ

〈|φ|2〉 =
−T
V

∂ lnZ

∂κ
=

−1

N 3
s Nt

∂ lnZ

∂κ
, χ|φ|2 =

−∂〈|φ|2〉
∂κ

, χ ′
|φ|2 =

∂ χ|φ|2

∂µ

The primary observables n and 〈|φ|2〉 can be easily expressed directly

by flux variables or assessed through (ratios of) the weight function :

n =
1

N 3
s Nt

〈
∑

x

kx,4

〉

〈|φ|2〉 =
1

N 3
s Nt

〈
∑

x

W (fx + 2)

W (fx)

〉



The worm algorithm has been tested by comparison with

• the exact solution for λ = 0 (solvable by Fourier transform)

• conventional Monte Carlo simulations for µ = 0.

The crucial test : reproducing the silver blaze effect at T = 0

for some sets of parameters, e.g. κ = 9.0 λ = 1.0, one can measure

the averages of n and |φ|2 and its derivatives as function of µ :

• n vanishes up to µc = 1.146 and rises linearly for µ > µc

• the derivative χn jumps from zero to a finite value at µc

• χ′
n shows a sharp peak at µc with a height growing

linearly with the volume (showing a singularity developing

in the limit V → ∞)



• the average of |φ|2 and its derivatives behave similarly

A pseudo silver blaze effect is observed at T > 0

At T > 0 (shorter lattice in time direction, Nt < Ns),

a weaker pseudo silver blaze effect is observed :

• a weak dependence on µ begins below µc

• there is a “threshold value” µonset which rises with T

relative to µc at T = 0.



Silver blaze effect at very low temperature

from arXiv:1206.2954 Gattringer and Kloiber



What remains from the Silver blaze effect at higher temperature ?

from arXiv:1206.2954 Gattringer and Kloiber



Phase structure in the T -µ plane

from arXiv:1206.2954 Gattringer and Kloiber



This is a very important observation :

• the worm algorithm can be applied in a field theory problem,

if the lattice formulation is chosen and reformulated by strong

coupling methods

• silver blaze problem is a more general/ubiquitous phenomenon

• silver blaze problem is related to the complex weight problem

• silver blaze problem is not specific for fermion problems



Moral :

“If importance sampling does not work in one representation, use

strong coupling methods to go over to another representation, where

importance sampling works again, however in other variables and

in another environment.”

This is sometimes called

“Duality transformation” (from one representation to the other.)



4. Fighting the Complex Measure Problem in Standard LGT

• General Remarks

• Reweighting across the β-µ Plane : Determinants

• Extrapolation by Taylor Expansion

• Continuation from Imaginary Chemical Potential

• Canonical Ensemble Approach



Where the quenched and phase-quenched simulation fails

from Ph. de Forcrand arXiv:1005.0539
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4. 1. General Remarks

Quenched simulations have been misleading !

µonset ≃ mπ/2 (too low, this would vanish in chiral limit !)

At zero temperature one expects µonset = O(mp/3)

Quenched QCD is not the Nf → 0 limit of QCD, as soon as µ 6= 0 !

Therefore quenched simulation is not an approximation at all !

There is no way to circumvent the problem by ignoring dynamical

quarks, calculating observables in the valence approximation.

But the phase of the determinant is particularly important !

There is no way to describe real physics by ignoring the phase of the

fermion determinant. Ignoring the phase describes an unwanted physical

situation governed by π condensation, where µ acts actually as µI.



Schematic phase diagram for QCD at finite isospin density

from Philipsen



“The determinant may be complex, and it must be complex to

produce the physically expected behavior.” (Ph. de Forcrand)

Consider the free energy of a static color charge or anti-charge:

Denote by detD e−SG D[U ] the measure, so it has a real and an

imaginary part.

P is the Polyakov loop, which has also real and an imaginary part.

The expectation values are the two real integrals:

〈tr P 〉 = e−
1
T Fq =

∫
(Re tr P × Re detD − Im tr P × Im detD) e−SG D[U ]

〈tr P †〉 = e−
1
T Fq̄ =

∫
(Re tr P × Re detD + Im tr P × Im detD) e−SG D[U ]

Different free energies (very plausible in a dense baryonic medium)

are only possible if the measure has an imaginary part, Im detD 6= 0.



Consider a toy model of an oscillating measure :

Z(λ) =

∫ +∞

−∞
dx e−x

2+iλx

Since the result is real, consider also the real part of the integrand,

e−x
2

cos(λx)

As soon as λ 6= 0, important values of x are not only those x ≈ 0.

The size of the important region is dictated by λ, not alone by the

Gaussian’s width.

Restricting the integral to a finite interval x ∈ [−λ, λ] will give O(100%)

error. The integral must be extended into the tail region in order

to reproduce the result Z(λ)/Z(0) = e−λ
2/4 with reasonable accuracy.

“In simulations at µ 6= 0 all configurations are potentially important !”



The toy model
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General considerations about modified sampling :

Reweighting for an oscillating measure

Assume a real, but oscillating weight function f(x) that is the

“correct” one; it has the correct partition function :

Zf =

∫
dx f(x)

Is there any better weight g(x) ≥ 0 to be taken instead for sampling ?

The corresponding auxiliary partition function would be :

Zg =

∫
dx g(x)

The expectation value of an observable O is :

〈O〉f =

∫
dx O(x) f(x)∫
dx f(x)

=

∫
dx O(x) f(x)

g(x) g(x)
∫
dx f(x)

g(x) g(x)
=

〈O f
g〉g

〈f
g
〉g



with a reweighting factor function of x

R =
f

g

The average of 〈f
g
〉 is called “average sign” (or “average phase factor”

in the more general case of a complex measure).

The optimal choice (de Forcrand, Kim, Takaishi, hep-lat/0209126)

is what renders the variance of the reweighting factor f
g minimal.

If the average sign tends to zero, the solution to the problem is

given by g(x) = |f(x)|. Then the reweighting factor takes only values

R =
f

g
= ±1 = sign(f)

.

The ensemble of x generated in such way is called “sign-quenched

ensemble” (or “phase quenched ensemble”).



The average sign

This is the ratio of two partition functions giving rise to different

free energies : 〈
f

g

〉

g

=
Zf
Zg

= e−
V
T ∆f

The difference in free energy densities ∆f = fensemble f − fensemble g

is multiplied by V/T in the exponent. Bad for large V and low T !

Therefore the statistics, that is necessary to get the denominator〈
f
g

〉

g
≈ 0 with sufficient precision, grows exponentially with V .

This is compulsory in order to be able to estimate the expectation

value 〈W 〉f itself with sufficient precision.

“The necessary amount of simulation time decides whether the

sign (or phase) quenching approach is feasible or non-feasible.”



Another problem of modified sampling : The overlap problem

Reweighting means to give configurations typical for the sampling

ensemble (g) a weight different from 1 in order to mimick another

target ensemble (f).

If the overlap of the two distributions is satisfactory, the apparent

loss in statistics is tolerable.

If, however, only the tails overlap, most of the proposed configurations

would get a small weight (are produced for waste !).

Then, one needs exponentially large statistics to get reliable results.

The result will be distorted, while the problem may remain unnoticed.

This effect seriously limits the applicability of reweighting.



The overlap problem with “horizontal reweighting” (only in µ)

U

S
µ=0 finite µ



4. 2. Reweighting across the β-µ Plane : Determinants

Explanation for staggered fermions (taking 4-th root for each flavor)

Exact partition function :

Z(β, µ) =

∫
(detD(U,µ))

Nf
4 e−βSGD[U ]

Now factorize the determinant into modulus and phase factor :

Z(β, µ) =

∫
|detD(U, µ)|

Nf
4 eiΘe−βSGD[U ]

According to the previous arguments, the optimal choice would be

to change β → β′ and µ→ µ′ for sampling (g) and to include the

| cos(Θ)| factor in the sampling measure :

Zg(β
′, µ′) =

∫
|detD(U, µ′)|

Nf
4 | cos(Θ)|e−β′SGD[U ]

This is very inefficient, since Θ is too expensive to be evaluated in each

Molecular Dynamics or Monte Carlo step !



The next choice is :

Zg(β
′, µ′) =

∫
|detD(U, µ′)|

Nf
4 e−β

′SGD[U ]

This ensemble (sampling) is called “phase quenched ensemble”.

It would be exact for an even number of flavors with pairwise

opposite isospin, if the chemical potential µ would be considered

as isospin chemical potential µ = µI
∣∣detD(µI)

Nf
∣∣ = detD(+µI)

Nf
2 detD(−µi)

Nf
2

Standard reweighting approach seems to suggest for sampling :

Zg = Z(β′, 0)

Then the reweighting factor function is :

R =
f

g
=

∣∣∣∣
detD(µ)

detD(0)

∣∣∣∣

Nf
4

eiΘe−(β−β′)SG



It has to be evaluated together with the evaluation of the observables

in order to calculate finally the correlator with O and the average sign :

〈O〉f =

∫
dx O(x) f(x)∫
dx f(x)

=

∫
dx O(x) f(x)

g(x) g(x)
∫
dx f(x)

g(x)
g(x)

=
〈O f

g〉g
〈f
g
〉g

Historically, this technique has been practized within two variants :

• horizontal reweighting (“Glasgow method”) at β′ = β fixed

• multiparameter reweighting (Budapest Fodor/Katz) : this method

actually explores the region in β-µ plane surrounding the finally

identified crossover line, starting from the transition point at µ = 0.



Glasgow (horizontal) vs. Budapest (multiparameter) reweighting



The Glasgow method failed miserably, due to the overlap problem.

In both cases the exact calculation of the fermion determinant at

µ 6= 0 is required, but only when a configuration is under examination,

not in every update step !

Special method of Fodor and Katz to evaluate determinants :

• shift the µ-dependence into two time slices

• factorization of the µ-dependence

detD(µ) = e−3N3
sNtµ det

(
P − eNtµ

)

P is the “reduced fermion matrix” ( a 2NN 3
s × 2NN 3

s matrix)

with two time slices.



When all 2NN 3
s eigenvalues λi of the reduced matrix are known,

detD(µ) = e−NN
3
sNtµ

2NN3
s∏

i=1

(
eNtµ − λi

)

Thus the reweighting factor is evaluated, while the sampling runs

with real positive weight detD(µ = 0) at β′ 6= β !

This reduced fermion matrix technique is broadly applied.



A very useful tool : one can define an “overlap measure” α :

α is defined as the fraction of sampled configurations that contributes

the fraction 1 − α to the total weight (in the target ensemble).

The reweighting step should not be too small and not too far !

Optimal is an overlap α = 50 %

The height lines of the overlap measure α in the β − µ plane show

clearly, where one can rely on reweighting.

The grey area is not accessible by reweighting from βc at µ = 0.

The ridge of the susceptibility (usually locating the crossover line)

falls on top of the ridge of the overlap measure α.

This is the way to find the optimal path for reweighting.



Left: Contour plots of the overlap measure; the red line (line of the cross-

over) is determined by the peaks of susceptibility. Right: volume and

µ dependence of the overlap measure. The half width (µ1/2; defined by

α = 1/2) shrinks according to: µ1/2 ∝ V −γ with γ ≈ 1/3.

from F. Csikor et al. hep-lat/0401016
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Best pathes for reweighting

from F. Csikor et al. hep-lat/0301027
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Finding the Line of the Crossover

from F. Csikor et al. hep-lat/0301027



Adding an imaginary part to β allows to study the Lee-Yang

zeroes of the theory : these are the zeroes of the partition function.

When the Lee-Yang zeroes in the limit V → ∞ approach the real axis

this signals that a real singularity (phase transition) appears.

At finite volume, the pattern of the nth Lee-Yang zeroes βnLY is

Im β
(n)
LY = C(2n + 1).

When the crossover turns into a first order transition, the location

of the (extrapolated) lowest Lee-Yang zero touches the real axis,C → 0.



This fixes the critical endpoint : F. Csikor et al. hep-lat/0301027

For 2 + 1 flavors the Wuppertal-Budapest group has obtained

µEB = 725 ± 35 MeV TE ≈ 160 ± 3.5 MeV Tc(µ = 0) = 172 ± 3 MeV

(has been later updated !)



The zeroes of the partition function near to the endpoint

of the first order electroweak phase transition (mHiggs ≈ 70 GeV)

from hep-lat/9704013 Gürtler, Ilgenfritz, Schiller
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Locating the Critical Endpoint by the lowest Lee-Yang zero

(extrapolated to V → ∞) (Im β
(0)
LY ) in the complex β plane.

from Z. Fodor and S. D. Katz hep-lat/0111064



An important cross-check for the different methods :

At imaginary µ, where direct simulation is possible, the Glasgow

(horizontal) and Budapest (multiparameter) reweighting can be

compared with direct simulation, “on the spot” (β, µ = iη).

(Nf = 4 staggered fermions)

Even though all determinants are positive (at µ = 0 and µ = iη),

Glasgow reweighting fails.

There exists a quasi-physical prediction :

For imaginary µ the chiral condensate 〈ψ̄ψ〉 should grow !

The Glasgow reweighting fails to reproduce this result of the

other two methods (the rise is insufficient !).



Testing the Method at Imaginary µ by Comparison with Direct

Simulation. Failure of the Glasgow method due to the Overlap

Problem.

from Z. Fodor and S. D. Katz hep-lat/0111064



Update of the critical point (small square) in physical units. Dotted line

for the crossover, solid line for the first order phase transition. The small

square shows the endpoint. Combining all uncertainties one obtains

TE = 162 ± 2 MeV and µE = 360 ± 40 MeV.

from Z. Fodor and S. D. Katz hep-lat/0402006



Compared to the previous finding, the light quark masses had been

reduced by a factor three, while the largest volume has been

increased by a factor three.

This simulation is still far from the continuum limit Nt = 4 :

a =
1

4Tc
∼ O(0.25 fm)



Doubts are still allowed : The critical endpoint lies too close to the

critical line for pion condensation (in phase-quenched simulations).

from Splittorff hep-lat/0505001
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Systematic investigations of the average phase factor are

needed (and done) to assess the reliability of reweighting

How good/bad reweighting by phase quenching works can

be monitored by evaluation of the average phase factor :

〈exp(2iθ)〉 =
Z(+µ,+µ)

Z(+µ,−µ)
=

〈
det(µ)2

| det(µ)|2
〉

|phase quenched

The reference ensemble is the isospin-µ ensemble with real

and positive determinant weight (effectively µI = µ).

Here, the phase factor is the observable of interest.

Let’s recall the physical background for this “observable” !



With Nf = 2 the physically true partition function at µ 6= 0 is

ZB =

∫
D[U ] (detD(µ))2 e−SYM

B stands for “baryonic chemical potential” µ.

The phase quenched partition function (subscript I, since this

would be correct for the “isospin chemical potential” µ)

ZI =

∫
D[U ] |detD(µ)|2 e−SYM

Distinguish the two “expectation values” of O :

〈O〉B =
1

ZB

∫
D[U ] O (detD(µ))2 e−SYM

〈O〉I =
1

ZI

∫
D[U ] O |detD(µ)|2 e−SYM

Each of the two determinants involved have the decomposition :

detD(µ) = | detD(µ)| eiΘ



Θ is the phase of the determinant; it fluctuates strongly with the

configuration {U} (fluctuations growing with the volume of the system) !

Although 〈O〉B cannot be directly calculated by importance sampling,

it can be estimated as follows (with Nf = 2)

〈O〉B =
〈O e2iΘ〉I
〈e2iΘ〉I

Numerator and denominator are both based on a phase-quenched

simulation (subscript I). The phase factor e2iΘ is handled like an

observable and must be evaluated for each configuration encountered.

It is a global quantity and fluctuates very strongly !

Both numerator and denominator will become very small for

realistic volumes. “The smallness of the denominator quantifies

the severity of the sign problem.”



Comparison of values of the “average phase factor” 〈exp(2iθ)〉 measured

in lattice simulations with predictions from one-loop chiral perturbation

theory (Splittorff, Verbaarschot 2007). Good agreement persists up to

T/Tc ∼ 0.90.
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Analytic results from chiral perturbation theory :

〈exp(2iθ)〉 =

(
1 − 4µ2

m2
π

)Nf+1

Results of the comparison :

• The sign problem is not severe for µ < mπ
2

• Large differences exist between the free energy densities

of the phase-quenched and full theory for µ > mπ
2 .

• The method becomes problematic for large volumes.

• For high temperature the average phase factor doesn’t

drop as fast as for T ≤ Tc

“Reweighting is problematic at low temperature and high density”



4. 4. Extrapolation by Taylor Expansion

• The chemical potential enters always in the combination µ/T .

• Reweighting gives µ-dependence (in principle, at least).

• In fact, reweighting is restricted to small µ/T and small V .

• The error analysis of results of reweighting is difficult,

a breakdown might even not be noticed (Glasgow method).

Rescue : Observables can be obtained as power series in µ/T .

Only by Taylor expansion a reliable V → ∞ behavior can be

determined.

p(T, µ) = p(T, µ) + ∆p(T, µ)



∆p is an even function of µ/T (since Z(µ/T ) = Z(−µ/T ))

∆p(T, µ)

T 4
=

∞∑

k=1

c2k(T )
(µ
T

)2k

The Taylor coefficients stem from derivatives w.r.t. µ of the determinant,

more precisely
∂ ln detD

∂µ
= tr

[
D−1∂D

∂µ

]

Therefore

c2k =

〈
tr ( polynomial of order 2k in D−1 and

∂D

∂µ
)

〉

|µ=0

Taylor coefficients are easily calculable (in principle !) in simulations

at µ = 0, practically by means of of stochastic estimators.

These observables become increasingly noisy with larger k.



The first two Taylor coefficients c2 and c4 as functions of temperature

look very nice.

from Ch. Schmidt hep-lat/0610116
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The Taylor coefficient c6 and the quark number susceptibility χq

(for three values of µ), all as functions of temperature.

from Ch. Schmidt hep-lat/0610116
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In principle, knowledge of c2k should give all thermodynamics :

• The equation of state (EoS)

• The transition line Tc(µ)

• The critical endpoint (µEc , T
E
c )

For all bulk quantities similar series expansions exist :

nq
T 3

= 2c2
µ

T
+ 4c4

(µ
T

)3

+ 6c6

(µ
T

)5

+ . . .

χq
T 2

= 2c2 + 12c4

(µ
T

)2

+ 30c6

(µ
T

)4

+ . . .



Going to higher density (higher µ/T ) meets difficulties :

• higher order k is required

• the coefficients become more noisy

• the computation needs large volumes

A better way by simulations at

• imaginary baryonic chemical potential (µq = iηq)

• imaginary isospin chemical potential (µI = iηI)

has been proposed/explored.

(see M. D’Elia and F. Sanfilippo arXiv:0904.1400)



For the prediction of quantum number fluctuations it is important

to discriminate between different quarks:

p

T 4
=

1

V T 3
lnZ(T, µu, µd, µs) =

∑

ijk

1

i!j!k!
χudsijk

(µu
T

)i (µu
T

)i (µd
T

)j

χudsijk =
∂ i+j+kp/T 4

∂(µu/T )i∂(µd/T )j∂(µs/T )k

or quantum numbers (baryon charge, strangeness, electric charge) ;

p

T 4
=

1

V T 3
lnZ(T, µB, µS, µQ) =

∑

ijk

1

i!j!k!
χudsijk

(µu
T

)i (µu
T

)i (µd
T

)j

χBQSijk =
∂ i+j+kp/T 4

∂(µB/T )i∂(µQ/T )j∂(µS/T )k



Meaning of the first two expansion coefficients for some charge X :

2cX2 =
1

V T 3
〈N 2

X〉

24cX4 =
1

V T 3

(
〈N 4

X〉 − 3〈N 2
X〉2
)

This is variance and kurtosis.



4. 5. Continuation from Imaginary Chemical Potential

This case is accessible for normal importance sampling.

A Taylor expansion is not needed, except (as a fit) for continuation

purposes from imaginary to real chemical potential.

Phase diagram for imaginary µ = iη :

• Characterized by periodicity η
T
→ η

T
+ 2π

3
(Roberge and Weiss)

• Starting fom µ = 0, the phase transition line (dotted line)

bends upward (contrary to downward at real µ).

• The nature of this phase transition is a “continuation” of the

physical phase transition at real µ.

• For quark masses > O(3 GeV) it might be first order transitions

which then meet in a triple point with the vertical transition.



Roberge-Weiss diagram : the vertical lines are first order phase transitions

between sectors with different Z(3) orientations of the Polyakov loop.
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The power expansion in orders of
(
µ
T

)2k
for any observable O,

〈O〉(µ = iη) =
∑

k

gk

(µ
T

)2k

can be read off from many real measurements “on the spots” (T, µ = iη).

Each ensemble is really sensitive to the presence of a chemical potential.

In order to conform with real µ, the data should be taken, however,

in the first sector with | argL| < π
3 .

This implies
∣∣ η
T

∣∣ < π
3.



There might be interesting microscopic properties of configurations

(like topological structure) that differ, in the same way as an

imaginary vacuum angle Θ = iηQ

through a factor

weight ∝ exp (ηQ Q)

with the topological charge

Q ∝
∫
d4x tr

(
FµνF̃µν

)

causes considerable squeezing of topologcal charge.

Simulations at imaginary Θ angle are used in order to determine

the neutron’s electrical dipole moment (NEDM, G. Schierholz et al.,

QCDSF/UKQCD Collaboration).



4. 6. Canonical Ensemble Approach

This does not immediately suffer from the complex measure problem.

For imaginary chemical potential µ = iη, let’s consider the fugacity

expansion of the grand canonical partition function.

This is a Fourier sum and is periodic in η/T with a period of 2π/3.

ZGC(T, iη) =
∑

n

einη/TZC(T, n)

The canonical partition functions ZC(T, n) can be obtained from the

grand canonical partition function at imaginary chemical potential

ZC(T, n) =
1

2π

∫ +π

−π
d(η/T )e−inη/TZGC(T, iη)

=
3

2π

∫ +π/3

−π/3
d(η/T )e−inη/TZGC(T, iη)

(last step because of the periodicity with restricted period 2π/3)



This is the Roberge-Weiss symmetry

Z(η/T ) = Z(η/T + 2π/3)

One consequence is the triality constraint :

ZC(T, n) = 0 if not n = 0 mod N

Simulations at imaginary chemical potential can give

ZGC(T, iη)

ZGC(T, 0)

enabling the calculation of the canonical partition functions ZC(T, n).

Problem : at higher baryon number B = n/3, the ratio needs to be

evaluated for very many (imax) integration points (i = 1, . . . , imax)
ηi
T

∈ [−π/3,+π/3] (1)

in order to get a reliable numerical evaluation of the Fourier transform.

Here the sign problem appears again in disguise.



The QCD Phase Diagram: Grand Canonical and Canonical View

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143
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Both thermodynamic ensembles should be equivalent in the infinite

volume limit. However, this limit is difficult to achieve.

For large, quasi-continuous baryon numberB, ZC becomes a function

of the baryon density ρ :

Z
(q)
C (V, T, n = NB) = Z

(B)
C (V, T,B) = Z

(dens)
C (V, T, ρ)

Then

Z(V, T, µ) =

∫ +∞

−∞
dρ eV Nρµ/TZ

(dens)
C (V, T, ρ)

= lim
V→∞

∫ +∞

−∞
dρe−

V
T (f(ρ)−µρ)

with f(ρ) as the free energy density in canonical ensemble.

Finally, µ can be expressed as function of the baryon density ρ :

µ(ρ) =
1

N

∂f(ρ)

∂ρ

i



This function shows a behavior resembling the van der Waals gas.

This approach has been pursued numerically :

S. Kratochvila and Ph. de Forcrand, hep-lat/0509143

63 × 4 lattice, four degenerate staggered quarks, volume (1.8 fm)3

A. Alexandru, M. Faber, I. Horvath and K. F. Liu, hep-lat/0507020

Kentucky group :

63 × 4 lattice, clover-improved Wilson fermions Nf = 2, 3 and 4.



Left: The Maxwell construction allows to extract the critical chemical

potential and the boundaries of the co-existence region. Right: Comparing

the saddle point approximation (red) with the fugacity expansion (blue).

Strong finite-size effects in the latter obscure the first-order transition.

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143
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The number of flavors is decisive : Nf = 4 vs. Nf = 2

from Anyi Li arXiv:1002:4459
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Phase boundaries in the temperature vs. density plot for Nf = 4.

from Anyi Li arXiv:1002:4459

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0  0.5  1  1.5  2

T
/T

c

ρB [fm-3]



Phase boundaries in the temperature vs. density plot for Nf = 4.

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143
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Left: Phase boundaries in the temperature vs. density plot for Nf = 3.

Right: Transition line in the temperature vs. chemical potential plot.

from Anyi Li arXiv:1002:4459
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This looks rather systematic, however the lattices are too small.

There are possible systematic effects of the canonical ensemble

method.

One would like to confirm this in a more robust way, that works

also for large lattices (Taylor expansion), in order to veryfy the

first order character of the transition.



5. Results for Standard LGT

• Results: Getting the Phase Diagram

• Results: Inside the Phase Diagram



5. 1. Results : Getting the Phase Diagram

From central Pb+Pb (Au+Au) collisions at SIS, AGS, SPS and RHIC

the collision energy dependence of temperature and baryonic chemical

potential (entering the particle yields, say via THERMUS) has been found

in the form (sNN is the center of mass energy of a single nucleon pair) ;

µB =
1.308

1 + 0.273
√
sNN

This µB enters the (chemical) “freeze-out” temperature Tfreeze(µB) close to

the phase transition (crossover) temperature at vanishing baryon density,

Tc(µ = 0) = 0.166 GeV parametrized as follows :

Tfreeze(µ)

Tc(µ = 0)
= 1 − 0.023

(µB
T

)2

−O(
(µ
T

)4

)

J. Cleymans Phys. Rev. C 63 (2006) 034905



This has motivated the interest in lattice results for the µ dependence

of the phase transition temperature Tc(µ) near Tc(0) (it is not too hard).

Tc(µ) must be an even function of µ near µ = 0.

Tc(µ)

Tc(µ = 0)
= 1 −

∑

k

t2k

(µ
T

)2k

The curvature found on the lattice is much smaller than that of the

freeze-out curve :
Tc(µ)

Tc(µ = 0)
= 1 − 0.0066(7)

(µ
T

)2

Similarly
βc(µ)

βc(µ = 0)
= 1 −

∑

k

b2k

(µ
T

)2k

The coefficients must be determined at imaginary µ = iη.



• It turns out, that the freeze-out temperature is thre times more

curved than Tc(µ).

• Moreover, the curvature seems to decrease in the continuum limit !

• However, the method is sensitive to the order of the series that is

fitted to the imaginary-µ data :

The coefficients at imaginary µ are alternating in sign and can be

determined only with large uncertainty.



Continuation of βc from negative µ2 to positive µ2

from Ph. de Forcrand arXiv:1005.0539
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Sketch of the QCD crossover line Tc(µ) vs. the experimental

freeze-out curve, which has a larger curvature, near Tc(0).

from Ph. de Forcrand arXiv:1005.0539



Comparison of the phase boundary for QCD with Nf = 4

staggered quarks on Nt = 4 lattices.

from S. Kratochvila and Ph. de Forcrand hep-lat/0509143



Is there a critical endpoint ? Is there somewhere a first order phase

transition for physical quark masses ?

Look back at the Columbia plot !

One can analyze
mc(µ)

mc(µ = 0)
= 1 +

∑

k

hk

(µ
T

)2k

(2)

for imaginary chemical potential.

Then, for real chemical potential, the area in the mu,d-ms plane,

where a first order transition will be realized, shrinks with real µ :

mu,s
c (µ)

mu,s
c (µ = 0)

= 1 − 39(8)
(µ
T

)2

(3)

Therefore, an intersection with the actual quark masses is unlikely.

Ph. de Forcrand and O. Philpsen (2002-2008).



Can the Taylor coefficients for the pressure constrain an eventual critical

endpoint ? This is the recipe :

• Find the largest temperature where all c2k positive. This is a candidate

for TEc

• Determine the radius of convergence of the Taylor series for p/T 4.

µE
TE

= lim
n→∞

√∣∣∣∣
c2n
c2n+2

∣∣∣∣ (TE)

However, low orders are not sufficient !

An independent confirmation of the critical endpoint is still lacking.



5. 2. Results : Inside the Phase Diagram

Results of two collaboration for the Equation of State (EoS)

1) MILC and hotQCD collaborations,

light and strange quarks at almost physical quark masses µl and µs

Temporal extent Nt = 4 and 6 (distance from continuum limit):

differences are visible

Calculations up to O(µ6) (up to c6)

Comparison with HRG (Hadron Resonance Gas, taking the empirical

hadron masses [to several GeV] with their baryonic charge into account)

2) BMW collaboration, light and strange quarks

Calculations up to O(µ2) (up to c2)

Data for Nt = 6, 8, 10, 12, quantities can be extrapolated to continuum limit



Change in the pressure due to µ 6= 0 (MILC+hotQCD)



Difference between the pressure at µ > 0 and µ = 0 (BMW)



The trace anomaly for non-zero µL (BMW, compared with HRG)



What else might be interesting ?

For the hadronization process on top of the freeze-out curve (inside the

“hadronic phase”) the following observables will be of large interest:

• screening lengths

• quark condensate 〈q̄q〉, other condensates ...

• hadron masses

• hadron radii

see: A. Hart, M. Laine, and O. Philipsen,

hep-lat/0010008 hep-ph/0004060


