

Hydrodynamics of heavy-ion collisions

Pasi Huovinen

FIAS — Frankfurt Institute for Advanced Studies

Helmholtz International Summer School "Dense Matter in Heavy-Ion Collisions and Astrophysics"

August 28–September 8, 2012, BLTP, JINR, Dubna, Russia

Nuclear phase diagram

- Transient matter • lifetime $t \sim 10 \text{ fm/c}$ $\sim 10^{-23}$ seconds • small size $r \sim 10 \text{ fm}$ $\sim 10^{-14} \text{ m}$
- rapid expansion

 $\begin{array}{l} \mbox{Multiplicity @ LHC} \\ \sim 15000 \end{array}$

©Dirk H. Rischke

Conservation laws

Conservation of energy and momentum:

 $\partial_{\mu}T^{\mu\nu}(x) = 0$

Conservation of charge:

 $\partial_{\mu}N^{\mu}(x) = 0$

Local conservation of particle number and energy-momentum.

↔ Hydrodynamics!

This can be generalized to multicomponent systems and systems with several conserved charges:

$$\partial_{\mu}N_{i}^{\mu}=0,$$

i = baryon number, strangeness, charge...

Consider only baryon number conservation, i = B.

- \Rightarrow 5 equations contain 14 unknowns!
- \Rightarrow The system of equations does not close.
- ⇒ Provide 9 additional equations or Eliminate 9 unknowns.

So what are the components of $T^{\mu\nu}$ and N^{μ} ?

• N^{μ} and $T^{\mu\nu}$ can be decomposed with respect to arbitrary, normalized, time-like 4-vector u^{μ} ,

$$u_{\mu}u^{\mu} = 1$$

• Define a projection operator

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}, \quad \Delta^{\mu\nu}u_{\nu} = 0,$$

which projects on the 3-space orthogonal to u^{μ} .

• Then

$$N^{\mu} = nu^{\mu} + \nu^{\mu}$$

where

- $n = N^{\mu}u_{\mu}$ is (baryon) charge density in the frame where $u = (1, \mathbf{0})$, local rest frame, LRF
- $u^{\mu} = \Delta^{\mu\nu} N_{\nu}$ is charge flow in LRF,

and

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - P\Delta^{\mu\nu} + q^{\mu}u^{\nu} + q^{\nu}u^{\mu} + \pi^{\mu\nu}$$

 $\epsilon \equiv u_{\mu}T^{\mu\nu}u_{\nu}$ energy density in LRF $P \equiv -\frac{1}{3}\Delta^{\mu\nu}T_{\mu\nu}$ isotropic pressure in LRF $q^{\mu} \equiv \Delta^{\mu \alpha} T_{\alpha \beta} u^{\beta}$ energy flow in LRF $\pi^{\mu\nu} \equiv \left[\frac{1}{2} (\Delta^{\mu}{}_{\alpha} \Delta^{\nu}{}_{\beta} + \Delta^{\nu}{}_{\beta} \Delta^{\mu}{}_{\alpha}) - \frac{1}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta} \right] T^{\alpha\beta}$ (trace-free) stress tensor in LRF

• The 14 unknowns in 5 equations:

$$\begin{array}{c} N^{\mu} & 4 \\ T^{\mu\nu} & 10 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{cc} n, \, \epsilon, \, P & 3 \\ q^{\mu} & 3 \\ \nu^{\mu} & 3 \\ \pi^{\mu\nu} & 5 \end{array} \right.$$

- So far u^{μ} is arbitrary. It attains a physical meaning by relating it to N^{μ} or $T^{\mu\nu}$:
 - 1. Eckart frame:

$$u_E^{\mu} \equiv \frac{N^{\mu}}{\sqrt{N_{\nu}N^{\nu}}}$$

 u^{μ} is 4-velocity of charge flow, $\nu^{\mu} = 0$. The 14 unknowns are $n, \epsilon, P, q^{\mu}, \pi^{\mu\nu}, u^{\mu}$.

2. Landau frame:

$$u_L^{\mu} \equiv \frac{T^{\mu\nu} u_{\nu}}{\sqrt{u_{\alpha} T^{\alpha\beta} T_{\beta\gamma} u^{\gamma}}}$$

 u^{μ} is 4-velocity of energy flow, $q^{\mu} = 0$. The 14 unknowns are $n, \epsilon, P, \nu^{\mu}, \pi^{\mu\nu}, u^{\mu}$.

• In general, the hydrodynamical equations are not closed and cannot be solved uniquely.

Ideal hydrodynamics

Suppose particles are in **local thermodynamical equilibrium**, i.e., single particle phase space distribution function is given by:

$$f_i(x,k) = \frac{g}{(2\pi)^3} \left[\exp\left(\frac{k_\mu u^\mu(x) - \mu(x)}{T(x)}\right) \pm 1 \right]^{-1}$$

where

T(x) and $\mu(x)$: local temperature and chemical potential $u(x)^{\mu}$: local 4-velocity of fluid flow.

Then kinetic theory definitions give

$$N^{\mu}(x) \equiv \sum_{i} q_{i} \int \frac{\mathrm{d}^{3}\mathbf{k}}{E} k^{\mu} f_{i}(x,k) = n(T,\mu) u^{\mu}$$
$$T^{\mu\nu}(x) \equiv \sum_{i} \int \frac{\mathrm{d}^{3}\mathbf{k}}{E} k^{\mu} k^{\nu} f_{i}(x,k)$$
$$= (\epsilon(T,\mu) + P(T,\mu)) u^{\mu} u^{\nu} - P(T,\mu) g^{\mu\nu}$$

where

$$\begin{split} n(T,\mu) &= \sum_{i} q_{i} \int \mathrm{d}^{3}\mathbf{k} \, f_{i}(x,E) \text{ is local charge density,} \\ \epsilon(T,\mu) &= \sum_{i} \int \mathrm{d}^{3}\mathbf{k} \, E f_{i}(x,E) \text{ is local energy density and} \\ P(T,\mu) &= \sum_{i} \int \mathrm{d}^{3}\mathbf{k} \, \frac{\mathbf{k}^{2}}{3E} f_{i}(x,E) \text{ is local pressure.} \end{split}$$

Note! f(x, E) is distribution in local rest frame: $u^{\mu} = (1, 0)$.

 \rightarrow Local thermodynamical equilibrium implies there is no viscosity:

$$\nu^{\mu} = q^{\mu} = \pi^{\mu\nu} = 0.$$

Ideal fluid approximation:

$$N^{\mu} = nu^{\mu}$$
$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\mu}$$

- Local equilibrium \Rightarrow no viscosity: $\nu^{\mu} = q^{\mu} = \pi^{\mu\nu} = 0$.
- Now N^{μ} and $T^{\mu\nu}$ contain 6 unknowns, ϵ , P, n and u^{μ} , but there are still only 5 equations!
- In thermodynamical equilibrium ϵ , P and n are not independent! They are specified by two variables, T and μ .
- The equation of state (EoS), $P(T, \mu)$ eliminates one unknown!
- Any equation of state of the form

$$P = P(\epsilon, n)$$

closes the system of hydrodynamic equations and makes it uniquely solvable (given initial conditions).

Remark: $P = P(\epsilon, n)$ is not a complete equation of state in a thermodynamical sense.

A complete equation of state allows to compute all thermodynamic variables.

For example, $s = s(\epsilon, n)$: $ds = 1/T d\epsilon - \mu/T dn$ (1st law of thermod.)

$$\frac{1}{T} = \frac{\partial s}{\partial \epsilon}|_n, \qquad \frac{\mu}{T} = -\frac{\partial s}{\partial n}|_\epsilon, \qquad P = Ts + \mu n - \epsilon$$

 $P = P(\epsilon, n)$ does not work!

$$\frac{\partial P}{\partial \epsilon}|_n = ? \qquad \frac{\partial P}{\partial n}|_{\epsilon} = ?$$

However, $P = P(T, \mu)$ does work!

$$dP = sdT + nd\mu \quad \Rightarrow \quad s = \frac{\partial P}{\partial T}|_{\mu}, \qquad n = \frac{\partial P}{\partial \mu}|_{T}$$

Entropy in ideal fluid

is conserved!

 $\partial_{\mu}S^{\mu} = 0$

where $S^{\mu} = s u^{\mu}$.

©Dirk H. Rischke

Usefulness of hydro?

- Initial state: unknown
- Equation of state: unknown
 Transport coefficients: unknown
- unknown • Freeze-out:

Predictive power?

- "Hydro doesn't know where to start nor where to end" (M. Prakash)

Usefulness of hydro?

- Initial state:

- Freeze-out:

unknown

unknown

Need More Constraints!

"Hydrodynamical method"

- 1. Use another model to fix unknowns (and add new assumptions. . .)
 - initial: color glass condensate or pQCD+saturation
 - initial and/or final: hadronic cascade
 - etc.
- 2. Use data to fix parameters:

Principle		Example @ RHIC
 use one set of data 	\iff	$\frac{\mathrm{d}N}{\mathrm{d}y p_T \mathrm{d}p_T} \bigg _{b=0}$ and $\frac{\mathrm{d}N}{\mathrm{d}y}(b)$
 fix parameters to fit it 	\iff	$\begin{cases} \epsilon_{0,\max} = 29.6 \mathrm{GeV/fm}^3 \\ \tau_0 = 0.6 \mathrm{fm/}c \\ T_{\mathrm{fo}} = 130 \mathrm{MeV} \end{cases}$
 predict another set of data 	\iff	HBT, photons & dileptons, elliptic flow

Equations of motion

Conservation laws lead to the equations of motion for relativistic fluid:

$$Dn = -n\partial_{\mu}u^{\mu}$$
$$D\epsilon = -(\epsilon + P)\partial_{\mu}u^{\nu}$$
$$(\epsilon + P)Du^{\mu} = \nabla^{\mu}P,$$

where

$$D = u^{\mu} \partial_{\mu}$$
 and $\nabla^{\mu} = \Delta^{\mu\nu} \partial_{\nu}$.

Bjorken hydrodynamics

- At very large energies, $\gamma \to \infty$ and "Landau thickness" $\to 0$
- Lack of longitudinal scale
 ⇒ scaling flow

$$v = \frac{z}{t}$$

• Practical coordinates to describe scaling flow expansion are

– Longitudinal proper time τ :

$$\tau \equiv \sqrt{t^2 - z^2} \quad \Leftrightarrow \quad t = \tau \cosh \eta$$

– Space-time rapidity η :

$$\eta = \frac{1}{2} \ln \frac{t+z}{t-z} \quad \Leftrightarrow \quad z = \tau \sinh \eta$$

• Scaling flow $v = z/t \Rightarrow$ fluid flow rapidity $y = \eta$:

$$y = \frac{1}{2}\ln\frac{1+v}{1-v} = \frac{1}{2}\ln\frac{1+z/t}{1-z/t} = \eta$$

Ignore transverse expansion:
 Hydrodynamic equations turn out to be particularly simple:

$$\frac{\partial \epsilon}{\partial \tau}\Big|_{\eta} = -\frac{\epsilon + P}{\tau}$$
(1)
$$\frac{\partial P}{\partial \eta}\Big|_{\tau} = 0$$
(2)
$$\frac{\partial n}{\partial \tau}\Big|_{\eta} = -\frac{n}{\tau}$$
(3)

- Eq. (2) ⇒
 - No force between fluid elements with different $\eta!$ - $P = P(\tau)$, no η -dependence!

• Eq. (2) + thermodynamics:

$$0 = \frac{\partial P}{\partial \eta} \bigg|_{\tau} = s \frac{\partial T}{\partial \eta} \bigg|_{\tau} + n \frac{\partial \mu}{\partial \eta} \bigg|_{\tau}$$

If n = 0, $T = T(\tau) \Rightarrow T = \text{const. on } \tau = \text{const. surface.}$

• In general T and ϵ not constant on $\tau =$ const. surface, but usually they are assumed to be

 \Rightarrow boost invariance: the system looks the same in all reference frames!

$$\epsilon = \epsilon(\tau), \quad n = n(\tau)$$

• Note that still

$$\frac{\partial}{\partial \eta} T^{\mu\nu} \neq 0 \neq \frac{\partial}{\partial \eta} u^{\mu}$$

Vector and tensor quantities at finite η Lorentz boosted from values at $\eta=0$

• Thermodynamics:

$$d\epsilon = T ds + \mu dn$$
$$\epsilon + P = Ts + \mu n$$

• Eq. (1):

$$\frac{\partial \epsilon}{\partial \tau} + \frac{\epsilon + P}{\tau} = 0$$

$$\Rightarrow T\frac{\partial s}{\partial \tau} + \mu \frac{\partial n}{\partial \tau} + T\frac{s}{\tau} + \mu \frac{n}{\tau} = 0$$

(Eq. (3))
$$\Rightarrow \frac{\partial s}{\partial \tau} + \frac{s}{\tau} = 0$$

$$\Rightarrow s(\tau) = s_0 \frac{\tau_0}{\tau}$$
$$\Rightarrow s\tau = \text{const.} \Rightarrow dS/d\eta = \text{const}$$

independent of the equation of state!

• Time evolution of baryon density:

Eq. (3)
$$\Rightarrow n(\tau) = n_0 \frac{\tau_0}{\tau} \Rightarrow \mathrm{d}N/\mathrm{d}\eta = \mathrm{const}$$

also independent of the EoS.

- Time evolution of energy density and temperature depend on the EoS.
- Assume ideal gas equation of state, $P = \frac{1}{3}\epsilon$, $\epsilon \propto T^4$:

E

Eq. (1)
$$\Rightarrow \frac{\partial \epsilon}{\partial \tau} + \frac{4\epsilon}{3\tau} = 0$$

 $\Rightarrow \epsilon(\tau) = \epsilon_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{4}{3}}$
 $\Rightarrow T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3}}$

• Note: τ_0 : initial time, thermalization time

Application: Initial energy density estimate

- 1. "Bjorken estimate"
 - At y = 0, $E_T = E$
 - Thus measuring

$$\left. \frac{\mathrm{d}E_T}{\mathrm{d}y} \right|_{y=0}$$

gives total energy at y = 0.

• Estimate the initial volume:

$$V = A\,\Delta z = \pi R^2 \tau_0\,\Delta\eta$$

• Thus

$$\epsilon = \frac{1}{\pi R^2} \frac{E}{\tau_0 \Delta \eta} = \frac{1}{\pi R^2 \tau_0} \frac{\mathrm{d}E_T}{\mathrm{d}y}$$

• Take R = 6.3 fm and $\tau_0 = 1$ fm/c:

Q SPS:
$$\frac{\mathrm{d}E_T}{\mathrm{d}y} \approx 400 \text{ GeV} \rightarrow \epsilon \sim 3.2 \text{ GeV/fm}^3$$

Q RHIC: $\frac{\mathrm{d}E_T}{\mathrm{d}y} \approx 620 \text{ GeV} \rightarrow \epsilon \sim 5.0 \text{ GeV/fm}^3$

• Note that in this approach

$$\epsilon(\tau) = \epsilon_0 \frac{\tau_0}{\tau}$$

No longitudinal work is done.

• Pressure does work during expansion, dE = -Pdt:

$$\frac{\partial \epsilon}{\partial \tau} = \frac{\epsilon + P}{\tau} \Rightarrow \mathbf{d}(\epsilon \tau) = P \mathbf{d}\tau$$

Highly nontrivial

2. Entropy conservation

• Assume ideal gas of massless particles:

$$s = 4n \Rightarrow \frac{\mathrm{d}S}{\mathrm{d}y} = 4\frac{\mathrm{d}N}{\mathrm{d}y}$$
$$s = \frac{4g}{\pi^2}T^3$$
$$\epsilon = \frac{3g}{\pi^2}T^4$$

• With $s\tau = \text{const.}$ these give

$$\epsilon_0 = \frac{3}{\pi^{\frac{2}{3}} R^{\frac{8}{3}} \tau_0^{\frac{4}{3}} g^{\frac{1}{3}}} \left(\frac{\mathrm{d}N}{\mathrm{d}y}\right)^{\frac{4}{3}}$$

Q RHIC:
$$\frac{\mathrm{d}N}{\mathrm{d}y} \approx 1000$$

 $g = 40$ (2 flavours + gluons)
 $\Rightarrow \epsilon_0 \approx 6.0 \, \mathrm{GeV/fm}^3$

Transverse expansion and flow

- Transverse expansion will set in latest at $\tau = R/c_s \approx 10$ fm
- \bullet Lifetimes in one dimensional expansion $\sim 30~{\rm fm}$
- One dimensional expansion an oversimplification
- 2+1D: longitudinal Bjorken, transverse expansion solved numerically
- 3+1D: expansion in all directions solved numerically

• Define speed of sound c_s :

$$c_s^2 = \frac{\partial P}{\partial \epsilon} \bigg|_{s/n_b}$$

- large $c_s \Rightarrow$ "stiff EoS"
- small $c_s \Rightarrow$ "soft EoS"
- For baryon-free matter in rest frame

$$(\epsilon + P)Du^{\mu} = \nabla^{\mu}P \qquad \iff \qquad \frac{\partial}{\partial \tau}u_{\mu} = -\frac{c_s^2}{s}\partial_{\mu}s$$

 \Rightarrow The stiffer the EoS, the larger the acceleration

Initial conditions

- Initial time from early thermalization argument (+finetuning...)
- Total entropy to fit the multiplicity
- Density distribution?
- Multiplicity is proportional to the number of participants
- Glauber model: number of participants/binary collisions

$$N_{part}(b) = \int \mathrm{d}x \mathrm{d}y \, T_A(x+b/2,y)[\dots$$

where

$$T_A(x,y) = \int_{-\infty}^{\infty} \mathrm{d}z \,\rho(x,y,z) \qquad \text{and} \qquad \rho(x,y,z) = \frac{\rho_0}{1 + e^{\frac{r-R_0}{a}}}$$

are nuclear thickness function and nuclear density distribution

• "Differential Optical Glauber:" Number of participants per unit area in transverse plane:

$$n_{\rm WN}(x,y;b) = T_A(x+b/2,y) \left[1 - \left(1 - \frac{\sigma}{B}T_B(x-b/2,y)\right)^B \right] + T_B(x-b/2,y) \left[1 - \left(1 - \frac{\sigma}{A}T_A(x-b/2,y)\right)^A \right]$$

Number of binary collisions per unit area

$$n_{\rm BC}(x,y;b) = \sigma_{pp}T_A(x+b/2,y)T_B(x-b/2,y)$$

- MC-Glauber:
 - sample $\rho(x, y, z)$ to get the positions of nucleons in 2 nuclei
 - count **#** of nucleons closer than $\sqrt{\sigma_{\rm pp}/\pi}$ in the collision
 - this gives $n_{\rm WN}$ and $n_{\rm BC}$
 - repeat to get enough statistics

Various flavors of Glauber

- 1. eWN: energy density $\epsilon(x,y;b) \propto n_{\rm WN}$
- 2. eBC: energy density $\epsilon(x,y;b) \propto n_{\rm BC}$
- 3. sWN: entropy density $s(x,y;b) \propto n_{\rm WN}$
- 4. sBC: entropy density $s(x, y; b) \propto n_{\rm BC}$
- 5. any combination of these!
- multiplicity as function of centrality $\implies \epsilon(x, y; b) = \kappa \cdot \epsilon_{WN} + (1 - \kappa) \cdot \epsilon_{BC}$ or $s(x, y; b) = \lambda \cdot s_{WN} + (1 - \lambda) \cdot s_{BC}$

Equation of state

- Final state includes π 's, K 's, nucleons. . .
 - \Rightarrow EoS of interacting hadron gas

 \Rightarrow well approximated by non-interacting gas of hadrons and resonances

$$P(T) = \sum_{i} \int \mathrm{d}^{3}p \, \frac{p^{2}}{3E} f(p,T)$$

• Plasma EoS (=massless parton gas) with proper statistics and $\mu_B \neq 0$:

$$P(T,\mu) = \frac{(32+21N_f)\pi^2}{180}T^4 + \frac{1}{9}\mu_B^2T^2 + \frac{1}{192\pi^2}\mu_B^4 - B$$

 \Rightarrow First order phase transition by Maxwell construction

• OR parametrized lattice result (only at $\mu_B = 0$): \Rightarrow match your favourite smoothly to HRG

When to end?

- Particles are observed, not fluid
- How and when to convert fluid to particles?
- i.e. how far is hydro valid?

- Kinetic equilibrium requires scattering rate >> expansion rate
- Scattering rate $\tau_{\rm sc}^{-1} \sim \sigma n \propto \sigma T^3$
- Expansion rate $\theta = \partial_{\mu} u^{\mu}$
- Fluid description breaks down when $\tau_{\rm sc}^{-1} \approx \theta$
- \rightarrow momentum distributions freeze-out
- $\tau_{\rm sc}^{-1} \propto T^3 \rightarrow$ rapid transition to free streaming
- Approximation: decoupling takes place on constant temperature hypersurface $\Sigma_{\rm fo}$, at $T=T_{\rm fo}$

Cooper-Frye

• Number of particles emitted = Number of particles crossing Σ_{fo}

$$\Rightarrow \quad N = \int_{\Sigma_{\rm fo}} \mathrm{d}\Sigma_{\mu} \, N^{\mu}$$

• Frozen-out particles do not interact anymore: kinetic theory

$$\Rightarrow N^{\mu} = \int \frac{\mathrm{d}^{3}\mathbf{p}}{E} p^{\mu} f(x, p \cdot u)$$
$$\Rightarrow N = \int \frac{\mathrm{d}^{3}\mathbf{p}}{E} \int_{\Sigma_{\mathrm{fo}}} \mathrm{d}\Sigma_{\mu} p^{\mu} f(x, p \cdot u)$$

• Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

$$E\frac{\mathrm{d}N}{\mathrm{d}\mathbf{p}^3} = \int_{\Sigma_{\mathrm{fo}}} \mathrm{d}\Sigma_{\mu} \, p^{\mu} f(x, p \cdot u)$$

Cooper and Frye, PRD 10, 186 (1974)

Blast wave

(Siemens and Rasmussen, PRL 42, 880 (1979))

- Freeze-out surface a thin cylindrical shell radius r, thickness dr, expansion velocity v_r , decoupling time τ_{fo} , boost invariant
- Cooper-Frye for Boltzmannions

$$\frac{\mathrm{d}N}{\mathrm{d}y\,p_T\,\mathrm{d}p_T} = \frac{g}{\pi}\,\tau_{\mathrm{fo}}\,r\,m_T\,\mathrm{I}_0\left(\frac{v_r\gamma_r p_T}{T}\right)\,\mathrm{K}_1\left(\frac{\gamma_r m_T}{T}\right)$$

effect of temperature and flow velocity

- The larger the temperature, the flatter the spectra
- The larger the velocity, the flatter the spectra \Rightarrow blueshift
- The heavier the particle, the more sensitive it is to flow (shape and slope)

Elliptic flow v_2

spatial anisotropy \rightarrow final azimuthal momentum anisotropy

Anisotropy in coordinate space + rescattering
 Anisotropy in momentum space

$$\frac{\partial}{\partial \tau} u_x = -\frac{c_s^2}{s} \frac{\partial}{\partial x} s$$
 and $\frac{\partial}{\partial \tau} u_y = -\frac{c_s^2}{s} \frac{\partial}{\partial y} s$

Elliptic flow v_2

• Fourier expansion of momentum distribution:

 $\frac{\mathrm{d}N}{\mathrm{d}y\,p_T\mathrm{d}p_T\,\mathrm{d}\phi} = \frac{1}{2\pi} \frac{\mathrm{d}N}{\mathrm{d}y\,p_T\mathrm{d}p_T} (1 + 2\mathbf{v_1}(y, p_T)\cos\phi + 2\mathbf{v_2}(y, p_T)\cos 2\phi + \cdots)$

 v_1 : Directed flow: preferred direction v_2 : Elliptic flow: preferred plane

sensitive to speed of sound $c_s^2 = \partial p / \partial e$ and shear viscosity η

Measures of anisotropy

• Spatial eccentricity

$$\epsilon_x = \frac{\langle \langle y^2 - x^2 \rangle \rangle}{\langle \langle y^2 + x^2 \rangle \rangle} = \frac{\int \mathrm{d}x \,\mathrm{d}y \,\epsilon \cdot (y^2 - x^2)}{\int \mathrm{d}x \,\mathrm{d}y \,\epsilon \cdot (y^2 - x^2)}$$

• Momentum anisotropy

$$\epsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle} = \frac{\int \mathrm{d}x \,\mathrm{d}y \, T^{xx} - T^{yy}}{\int \mathrm{d}x \,\mathrm{d}y \, T^{xx} - T^{yy}}$$

• Au+Au @ RHIC, b = 6 fm:

- ϵ_x decreases during the evolution \Rightarrow elliptic flow is self-quenching
- Most of ϵ_p is built up early in the evolution

v_2

- Not only collective but also thermal motion
- Elliptic flow v_2 a.k.a. p_T -averaged v_2 :

$$v_2 = \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle} = \frac{\int \mathrm{d}\phi \, \cos(2\phi) \frac{\mathrm{d}N}{\mathrm{d}y \, \mathrm{d}\phi}}{\mathrm{d}N/\mathrm{d}y}$$

• p_T -differential v_2

$$v_2(p_T) = \frac{\int \mathrm{d}\phi \, \cos(2\phi) \frac{\mathrm{d}N}{\mathrm{d}y \, p_T \mathrm{d}p_T \, \mathrm{d}\phi}}{\int \mathrm{d}\phi \frac{\mathrm{d}N}{\mathrm{d}y \, p_T \mathrm{d}p_T \, \mathrm{d}\phi}}$$

- If $m_1 > m_2$, $v_2(m_1) > v_2(m_1)$, but $v_2(p_T, m_1) < v_2(p_T, m_2)$!
- No contradiction, since

$$v_2 = \frac{\int \mathrm{d}p_T \, v_2(p_T) \frac{\mathrm{d}N}{\mathrm{d}p_T}}{\int \mathrm{d}p_T \, \frac{\mathrm{d}N}{\mathrm{d}p_T}}$$

 ϵ_p VS. v_2

• Au+Au @ RHIC, b = 7 fm:

- NO clear correspondence
- especially if one includes resonance decays

Why $m_1 < m_2 \Rightarrow v_2(p_T, m_1) > v_2(p_T, m_2)$?

Each element has unit volume, decouples at the same time at the same temperature. Flow velocity in plane is larger than out of plane, $|v_x| > |v_y|$.

Boltzmann distribution and Cooper-Frye formula:

$$v_2(p_T) = \frac{I_2\left(\frac{\gamma_x v_x p}{T}\right) - e^{\frac{E}{T}(\gamma_x - \gamma_y)}I_2\left(\frac{\gamma_y v_y p}{T}\right)}{I_0\left(\frac{\gamma_x v_x p}{T}\right) + e^{\frac{E}{T}(\gamma_x - \gamma_y)}I_0\left(\frac{\gamma_y v_y p}{T}\right)}$$
$$= \frac{C_1 - e^{\lambda\sqrt{m^2 + p^2}}C_2}{C_3 + e^{\lambda\sqrt{m^2 + p^2}}C_4}$$

mass increases, numerator decreases and denominator increases $\rightarrow v_2$ decreases

Early thermalization?

- ϵ_p/ϵ_x almost independent of *b*, i.e. the initial value of ϵ_x
- Before thermalization, $\tau < \tau_0$ system expands to all directions, ϵ_x decreases

©Peter F. Kolb

 \Rightarrow Hydrodynamical evolution must start early or final v_2 is too small • We do not know if v_2 could build up before thermalization...

event-by-event

- shape fluctuates event-by-event
- all coefficients v_n finite

Success of ideal hydrodynamics

• p_T -averaged v_2 of charged hadrons:

• works beautifully in central and semi-central collisions

• but why is $v_{2,obs} > v_{2,hydro}$ in most central collisions?

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias Au+Au at RHIC

not perfect agreement but plasma EoS favored

Lattice EoS

- ideal hydro, Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- chemical equilibrium

• s95p: $T_{dec} = 140 \text{ MeV}$

• EoS Q: first order phase transition at $T_c = 170$ MeV, $T_{dec} = 125$ MeV

Thermal models

- Hadronic phase: ideal gas of massive hadrons and resonances
- in chemical equilibrium

- Particle ratios $\iff T \approx 160-170$ MeV temperature
- Evolution to $T\approx 100\text{--}120~\mathrm{MeV}$ temperature
- \Rightarrow In hydro particle ratios become wrong

Chemical non-equilibrium

- Treat number of pions, kaons etc. as conserved quantum numbers below T_{ch} (Bebie et al, Nucl.Phys.B378:95-130,1992)
- $P = P(\epsilon, n_b)$ changes very little, but $T = T(\epsilon, n_b)$ changes. . .

Effect of T_{kin} **on pions**

- Longitudinal expansion does work $(p \, dV) \Rightarrow \frac{dE_T}{dy}$ decreases
- If particle # is conserved, $\langle p_T \rangle$ decreases
- In chemical equilibrium mass energy of baryon-antibaryon pairs is converted to kinetic energy $\Rightarrow \langle p_T \rangle$ increases!

More realistic EoS

- \bullet ideal hydro, Au+Au at $\sqrt{s_{NN}}=200~{\rm GeV}$
- $T_{\rm chem} = 150$ MeV

• EoS Q: $T_{dec} = 120$ MeV, $s_{ini} \propto N_{bin} \tau_0 = 0.2$ fm/c

- s95p, $\tau_0 = 0.8$: $T_{dec} = 120$ MeV, $s_{ini} \propto N_{bin}$, $\tau_0 = 0.8$ fm/c
- s95p, $\tau_0 = 0.2$: $T_{dec} = 120$ MeV, $s_{ini} \propto N_{bin} + N_{part}$, $\tau_0 = 0.2$ fm/c

Summary

- Hydrodynamics is a useful tool to model collision dynamics
 - approximation at its best
 - but it can reproduce (some of) the data
- we have observed hydrodynamical behaviour at RHIC and LHC