Hydrodynamics of heavy-ion collisions

Pasi Huovinen

FIAS - Frankfurt Institute for Advanced Studies

Helmholtz International Summer School
"Dense Matter in Heavy-Ion Collisions and Astrophysics"
August 28-September 8, 2012, BLTP, JINR, Dubna, Russia

Nuclear phase diagram

The space-time picture:

Conservation laws

Conservation of energy and momentum:

$$
\partial_{\mu} T^{\mu \nu}(x)=0
$$

Conservation of charge:

$$
\partial_{\mu} N^{\mu}(x)=0
$$

Local conservation of particle number and energy-momentum.

\Longleftrightarrow Hydrodynamics!

This can be generalized to multicomponent systems and systems with several conserved charges:

$$
\partial_{\mu} N_{i}^{\mu}=0,
$$

$i=$ baryon number, strangeness, charge. . .

Consider only baryon number conservation, $i=B$.
$\Rightarrow 5$ equations contain 14 unknowns!
\Rightarrow The system of equations does not close.
\Rightarrow Provide 9 additional equations or Eliminate 9 unknowns.

So what are the components of $T^{\mu \nu}$ and N^{μ} ?

- N^{μ} and $T^{\mu \nu}$ can be decomposed with respect to arbitrary, normalized, time-like 4-vector u^{μ},

$$
u_{\mu} u^{\mu}=1
$$

- Define a projection operator

$$
\Delta^{\mu \nu}=g^{\mu \nu}-u^{\mu} u^{\nu}, \quad \Delta^{\mu \nu} u_{\nu}=0
$$

which projects on the 3-space orthogonal to u^{μ}.

- Then

$$
N^{\mu}=n u^{\mu}+\nu^{\mu}
$$

where
$n=N^{\mu} u_{\mu} \quad$ is (baryon) charge density in the frame where $u=(1,0)$, local rest frame, LRF
$\nu^{\mu}=\Delta^{\mu \nu} N_{\nu} \quad$ is charge flow in LRF,
and

$$
T^{\mu \nu}=\epsilon u^{\mu} u^{\nu}-P \Delta^{\mu \nu}+q^{\mu} u^{\nu}+q^{\nu} u^{\mu}+\pi^{\mu \nu}
$$

$\epsilon \equiv u_{\mu} T^{\mu \nu} u_{\nu}$ energy density in LRF
$P \equiv-\frac{1}{3} \Delta^{\mu \nu} T_{\mu \nu}$ isotropic pressure in LRF
$q^{\mu} \equiv \Delta^{\mu \alpha} T_{\alpha \beta} u^{\beta}$ energy flow in LRF
$\pi^{\mu \nu} \equiv\left[\frac{1}{2}\left(\Delta^{\mu}{ }_{\alpha} \Delta^{\nu}{ }_{\beta}+\Delta^{\nu}{ }_{\beta} \Delta^{\mu}{ }_{\alpha}\right)-\frac{1}{3} \Delta^{\mu \nu} \Delta_{\alpha \beta}\right] T^{\alpha \beta}$
(trace-free) stress tensor in LRF

- The 14 unknowns in 5 equations:

$$
\left.\begin{array}{cc}
N^{\mu} & 4 \\
T^{\mu \nu} & 10
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{cc}
n, \epsilon, P & 3 \\
q^{\mu} & 3 \\
\nu^{\mu} & 3 \\
\pi^{\mu \nu} & 5
\end{array}\right.
$$

- So far u^{μ} is arbitrary. It attains a physical meaning by relating it to N^{μ} or $T^{\mu \nu}$:

1. Eckart frame:

$$
u_{E}^{\mu} \equiv \frac{N^{\mu}}{\sqrt{N_{\nu} N^{\nu}}}
$$

u^{μ} is 4-velocity of charge flow, $\nu^{\mu}=0$.
The 14 unknowns are $n, \epsilon, P, q^{\mu}, \pi^{\mu \nu}, u^{\mu}$.
2. Landau frame:

$$
u_{L}^{\mu} \equiv \frac{T^{\mu \nu} u_{\nu}}{\sqrt{u_{\alpha} T^{\alpha \beta} T_{\beta \gamma} u^{\gamma}}}
$$

u^{μ} is 4-velocity of energy flow, $q^{\mu}=0$.
The 14 unknowns are $n, \epsilon, P, \nu^{\mu}, \pi^{\mu \nu}, u^{\mu}$.

- In general, the hydrodynamical equations are not closed and cannot be solved uniquely.

Ideal hydrodynamics

Suppose particles are in local thermodynamical equilibrium, i.e., single particle phase space distribution function is given by:

$$
f_{i}(x, k)=\frac{g}{(2 \pi)^{3}}\left[\exp \left(\frac{k_{\mu} u^{\mu}(x)-\mu(x)}{T(x)}\right) \pm 1\right]^{-1}
$$

where
$T(x)$ and $\mu(x)$: local temperature and chemical potential $u(x)^{\mu}: \quad$ local 4-velocity of fluid flow.

Then kinetic theory definitions give

$$
\begin{aligned}
N^{\mu}(x) & \equiv \sum_{i} q_{i} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{E} k^{\mu} f_{i}(x, k)=n(T, \mu) u^{\mu} \\
T^{\mu \nu}(x) & \equiv \sum_{i} \int \frac{\mathrm{~d}^{3} \mathbf{k}}{E} k^{\mu} k^{\nu} f_{i}(x, k) \\
& =(\epsilon(T, \mu)+P(T, \mu)) u^{\mu} u^{\nu}-P(T, \mu) g^{\mu \nu}
\end{aligned}
$$

where

$$
\begin{aligned}
n(T, \mu) & =\sum_{i} q_{i} \int \mathrm{~d}^{3} \mathbf{k} f_{i}(x, E) \text { is local charge density, } \\
\epsilon(T, \mu) & =\sum_{i} \int \mathrm{~d}^{3} \mathbf{k} E f_{i}(x, E) \text { is local energy density and } \\
P(T, \mu) & =\sum_{i} \int \mathrm{~d}^{3} \mathbf{k} \frac{\mathbf{k}^{2}}{3 E} f_{i}(x, E) \text { is local pressure. }
\end{aligned}
$$

Note! $f(x, E)$ is distribution in local rest frame: $u^{\mu}=(1,0)$.
\rightarrow Local thermodynamical equilibrium implies there is no viscosity:

$$
\nu^{\mu}=q^{\mu}=\pi^{\mu \nu}=0
$$

Ideal fluid approximation:

$$
\begin{aligned}
N^{\mu} & =n u^{\mu} \\
T^{\mu \nu} & =(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \mu}
\end{aligned}
$$

- Local equilibrium \Rightarrow no viscosity: $\nu^{\mu}=q^{\mu}=\pi^{\mu \nu}=0$.
- Now N^{μ} and $T^{\mu \nu}$ contain 6 unknowns, ϵ, P, n and u^{μ}, but there are still only 5 equations!
- In thermodynamical equilibrium ϵ, P and n are not independent! They are specified by two variables, T and μ.
- The equation of state (EoS), $P(T, \mu)$ eliminates one unknown!
- Any equation of state of the form

$$
P=P(\epsilon, n)
$$

closes the system of hydrodynamic equations and makes it uniquely solvable (given initial conditions).

Remark: $P=P(\epsilon, n)$ is not a complete equation of state in a thermodynamical sense.

A complete equation of state allows to compute all thermodynamic variables.
For example, $s=s(\epsilon, n): \mathrm{d} s=1 / T \mathrm{~d} \epsilon-\mu / T \mathrm{~d} n$ (1st law of thermod.)

$$
\frac{1}{T}=\left.\frac{\partial s}{\partial \epsilon}\right|_{n}, \quad \frac{\mu}{T}=-\left.\frac{\partial s}{\partial n}\right|_{\epsilon}, \quad P=T s+\mu n-\epsilon
$$

$P=P(\epsilon, n)$ does not work!

$$
\left.\frac{\partial P}{\partial \epsilon}\right|_{n}=\left.? \quad \frac{\partial P}{\partial n}\right|_{\epsilon}=?
$$

However, $P=P(T, \mu)$ does work!

$$
\mathrm{d} P=s \mathrm{~d} T+n \mathrm{~d} \mu \quad \Rightarrow \quad s=\left.\frac{\partial P}{\partial T}\right|_{\mu}, \quad n=\left.\frac{\partial P}{\partial \mu}\right|_{T}
$$

Entropy in ideal fluid

is conserved!

$$
\partial_{\mu} S^{\mu}=0
$$

where $S^{\mu}=s u^{\mu}$.

The space-time picture:

Usefulness of hydro?

- Initial state:
- Equation of state:
- Transport coefficients:
- Freeze-out:
unknown
unknown
unknown
unknown

\Rightarrow Predictive power?
- "Hydro doesn't know where to start nor where to end" (M. Prakash)

Usefulness of hydro?

- Initial state:
- Equation of state:

$\Longrightarrow \quad$ Need More Constraints!

"Hydrodynamical method"

1. Use another model to fix unknowns (and add new assumptions. . .)

- initial: color glass condensate or pQCD+saturation
- initial and/or final: hadronic cascade
- etc.

2. Use data to fix parameters:

Principle

- use one set of data
- fix parameters to fit it
- predict another set of data

Example @ RHIC

$$
\left.\Longleftrightarrow \quad \frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T}}\right|_{b=0} \quad \text { and } \quad \frac{\mathrm{d} N}{\mathrm{~d} y}(b)
$$

$$
\Longleftrightarrow\left\{\begin{array}{l}
\epsilon_{0, \max }=29.6 \mathbf{G e V} / \mathbf{f m}^{3} \\
\tau_{0}=0.6 \mathbf{f m} / c \\
T_{\mathrm{fo}}=130 \mathbf{M e V}
\end{array}\right.
$$ HBT, photons \& dileptons, elliptic flow. . .

Equations of motion

Conservation laws lead to the equations of motion for relativistic fluid:

where

$$
D=u^{\mu} \partial_{\mu} \quad \text { and } \quad \nabla^{\mu}=\Delta^{\mu \nu} \partial_{\nu} .
$$

Bjorken hydrodynamics

- At very large energies, $\gamma \rightarrow \infty$ and "Landau thickness" $\rightarrow 0$
- Lack of longitudinal scale \Rightarrow scaling flow

$$
v=\frac{z}{t}
$$

- Practical coordinates to describe scaling flow expansion are

- Longitudinal proper time τ :

$$
\tau \equiv \sqrt{t^{2}-z^{2}} \Leftrightarrow t=\tau \cosh \eta
$$

- Space-time rapidity η :

$$
\eta=\frac{1}{2} \ln \frac{t+z}{t-z} \Leftrightarrow z=\tau \sinh \eta
$$

- Scaling flow $v=z / t \Rightarrow$ fluid flow rapidity $y=\eta$:

$$
y=\frac{1}{2} \ln \frac{1+v}{1-v}=\frac{1}{2} \ln \frac{1+z / t}{1-z / t}=\eta
$$

- Ignore transverse expansion:

Hydrodynamic equations turn out to be particularly simple:

$$
\begin{align*}
\left.\frac{\partial \epsilon}{\partial \tau}\right|_{\eta} & =-\frac{\epsilon+P}{\tau} \tag{1}\\
\left.\frac{\partial P}{\partial \eta}\right|_{\tau} & =0 \tag{2}\\
\left.\frac{\partial n}{\partial \tau}\right|_{\eta} & =-\frac{n}{\tau} \tag{3}
\end{align*}
$$

- Eq. (2) \Rightarrow
- No force between fluid elements with different η !
- $P=P(\tau)$, no η-dependence!
- Eq. (2) + thermodynamics:

$$
0=\left.\frac{\partial P}{\partial \eta}\right|_{\tau}=\left.s \frac{\partial T}{\partial \eta}\right|_{\tau}+\left.n \frac{\partial \mu}{\partial \eta}\right|_{\tau}
$$

If $n=0, T=T(\tau) \Rightarrow T=$ const. on $\tau=$ const. surface.

- In general T and ϵ not constant on $\tau=$ const. surface, but usually they are assumed to be
\Rightarrow boost invariance: the system looks the same in all reference frames!

$$
\epsilon=\epsilon(\tau), \quad n=n(\tau)
$$

- Note that still

$$
\frac{\partial}{\partial \eta} T^{\mu \nu} \neq 0 \neq \frac{\partial}{\partial \eta} u^{\mu}
$$

Vector and tensor quantities at finite η Lorentz boosted from values at $\eta=0$

- Thermodynamics:

$$
\begin{aligned}
\mathrm{d} \epsilon & =T \mathrm{~d} s+\mu \mathrm{d} n \\
\epsilon+P & =T s+\mu n
\end{aligned}
$$

- Eq. (1):

$$
\begin{aligned}
& \frac{\partial \epsilon}{\partial \tau}+\frac{\epsilon+P}{\tau}=0 \\
\Rightarrow & T \frac{\partial s}{\partial \tau}+\mu \frac{\partial n}{\partial \tau}+T \frac{s}{\tau}+\mu \frac{n}{\tau}=0
\end{aligned}
$$

(Eq. (3)) $\Rightarrow \frac{\partial s}{\partial \tau}+\frac{s}{\tau}=0$

$$
\begin{aligned}
& \Rightarrow \quad s(\tau)=s_{0} \frac{\tau_{0}}{\tau} \\
& \Rightarrow \quad s \tau=\text { const. } \Rightarrow \mathrm{d} S / \mathrm{d} \eta=\text { const }
\end{aligned}
$$

independent of the equation of state!

- Time evolution of baryon density:

Eq. (3) $\Rightarrow n(\tau)=n_{0} \frac{\tau_{0}}{\tau} \Rightarrow \mathrm{~d} N / \mathrm{d} \eta=$ const
also independent of the EoS.

- Time evolution of energy density and temperature depend on the EoS.
- Assume ideal gas equation of state, $P=\frac{1}{3} \epsilon, \epsilon \propto T^{4}$:

$$
\text { Eq. (1) } \begin{aligned}
& \Rightarrow \frac{\partial \epsilon}{\partial \tau}+\frac{4 \epsilon}{3 \tau}=0 \\
& \Rightarrow \epsilon(\tau)=\epsilon_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{4}{3}} \\
& \Rightarrow T(\tau)=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\frac{1}{3}}
\end{aligned}
$$

- Note: τ_{0} : initial time, thermalization time

Application: Initial energy density estimate

1. "Bjorken estimate"

- At $y=0, E_{T}=E$
- Thus measuring

$$
\left.\frac{\mathrm{d} E_{T}}{\mathrm{~d} y}\right|_{y=0}
$$

gives total energy at $y=0$.

- Estimate the initial volume:

$$
V=A \Delta z=\pi R^{2} \tau_{0} \Delta \eta
$$

- Thus

$$
\epsilon=\frac{1}{\pi R^{2}} \frac{E}{\tau_{0} \Delta \eta}=\frac{1}{\pi R^{2} \tau_{0}} \frac{\mathrm{~d} E_{T}}{\mathrm{~d} y}
$$

- Take $R=6.3 \mathrm{fm}$ and $\tau_{0}=1 \mathrm{fm} / \mathbf{c}$:

$$
\begin{aligned}
& \text { @ SPS: } \frac{\mathrm{d} E_{T}}{\mathrm{~d} y} \approx 400 \mathrm{GeV} \rightarrow \epsilon \sim 3.2 \mathrm{GeV} / \mathrm{fm}^{3} \\
& \text { @ RHIC: } \frac{\mathrm{d} E_{T}}{\mathrm{~d} y} \approx 620 \mathrm{GeV} \rightarrow \epsilon \sim 5.0 \mathrm{GeV} / \mathrm{fm}^{3}
\end{aligned}
$$

- Note that in this approach

$$
\epsilon(\tau)=\epsilon_{0} \frac{\tau_{0}}{\tau}
$$

No longitudinal work is done.

- Pressure does work during expansion, $\mathrm{d} E=-P \mathrm{~d} t$:

$$
\frac{\partial \epsilon}{\partial \tau}=\frac{\epsilon+P}{\tau} \Rightarrow \mathrm{~d}(\epsilon \tau)=P \mathrm{~d} \tau
$$

Highly nontrivial
2. Entropy conservation

- Assume ideal gas of massless particles:

$$
\begin{aligned}
& s=4 n \Rightarrow \frac{\mathrm{~d} S}{\mathrm{~d} y}=4 \frac{\mathrm{~d} N}{\mathrm{~d} y} \\
& s=\frac{4 g}{\pi^{2}} T^{3} \\
& \epsilon=\frac{3 g}{\pi^{2}} T^{4}
\end{aligned}
$$

- With $s \tau=$ const. these give

$$
\epsilon_{0}=\frac{3}{\pi^{\frac{2}{3}} R^{\frac{8}{3}} \tau_{0}^{\frac{4}{3}} g^{\frac{1}{3}}}\left(\frac{\mathrm{~d} N}{\mathrm{~d} y}\right)^{\frac{4}{3}}
$$

@ RHIC: $\frac{\mathrm{d} N}{\mathrm{~d} y} \approx 1000$

$$
\begin{aligned}
g & =40 \text { (2 flavours + gluons) } \\
\Rightarrow \epsilon_{0} & \approx 6.0 \mathrm{GeV} / \mathbf{f m}^{3}
\end{aligned}
$$

Transverse expansion and flow

- Transverse expansion will set in latest at $\tau=R / c_{s} \approx 10 \mathbf{f m}$
- Lifetimes in one dimensional expansion $\sim 30 \mathrm{fm}$
- One dimensional expansion an oversimplification
- 2+1D: longitudinal Bjorken, transverse expansion solved numerically
-3+1D: expansion in all directions solved numerically
- Define speed of sound c_{s} :

$$
c_{s}^{2}=\left.\frac{\partial P}{\partial \epsilon}\right|_{s / n_{b}}
$$

- large $c_{s} \Rightarrow$ "stiff EoS"
- small $c_{s} \Rightarrow$ "soft EoS"
- For baryon-free matter in rest frame

$$
(\epsilon+P) D u^{\mu}=\nabla^{\mu} P \quad \Longleftrightarrow \quad \frac{\partial}{\partial \tau} u_{\mu}=-\frac{c_{s}^{2}}{s} \partial_{\mu} s
$$

\Rightarrow The stiffer the EoS, the larger the acceleration

Initial conditions

- Initial time from early thermalization argument (+finetuning. . .)
- Total entropy to fit the multiplicity
- Density distribution?
- Multiplicity is proportional to the number of participants
- Glauber model: number of participants/binary collisions

$$
N_{\text {part }}(b)=\int \mathrm{d} x \mathrm{~d} y T_{A}(x+b / 2, y)[\ldots
$$

where

$$
T_{A}(x, y)=\int_{-\infty}^{\infty} \mathrm{d} z \rho(x, y, z) \quad \text { and } \quad \rho(x, y, z)=\frac{\rho_{0}}{1+e^{\frac{r-R_{0}}{a}}}
$$

are nuclear thickness function and nuclear density distribution

- "Differential Optical Glauber:"

Number of participants per unit area in transverse plane:

$$
\begin{aligned}
n_{\mathrm{WN}}(x, y ; b) & =T_{A}(x+b / 2, y)\left[1-\left(1-\frac{\sigma}{B} T_{B}(x-b / 2, y)\right)^{B}\right] \\
& +T_{B}(x-b / 2, y)\left[1-\left(1-\frac{\sigma}{A} T_{A}(x-b / 2, y)\right)^{A}\right]
\end{aligned}
$$

Number of binary collisions per unit area

$$
n_{\mathrm{BC}}(x, y ; b)=\sigma_{p p} T_{A}(x+b / 2, y) T_{B}(x-b / 2, y)
$$

- MC-Glauber:
- sample $\rho(x, y, z)$ to get the positions of nucleons in 2 nuclei
- count \# of nucleons closer than $\sqrt{\sigma_{\mathrm{pp}} / \pi}$ in the collision
- this gives n_{WN} and n_{BC}
- repeat to get enough statistics

Various flavors of Glauber

1. eWN: energy density $\epsilon(x, y ; b) \propto n_{\mathrm{WN}}$
2. eBC: energy density $\epsilon(x, y ; b) \propto n_{\mathrm{BC}}$
3. sWN: entropy density $s(x, y ; b) \propto n_{\mathrm{WN}}$
4. sBC: entropy density $s(x, y ; b) \propto n_{\mathrm{BC}}$
5. any combination of these!

- multiplicity as function of centrality

$$
\begin{aligned}
\Longrightarrow \epsilon(x, y ; b) & =\kappa \cdot \epsilon_{\mathrm{WN}}+(1-\kappa) \cdot \epsilon_{\mathrm{BC}} \\
\text { or } s(x, y ; b) & =\lambda \cdot s_{\mathrm{WN}}+(1-\lambda) \cdot s_{\mathrm{BC}}
\end{aligned}
$$

Equation of state

- Final state includes π 's, K 's, nucleons. . .
\Rightarrow EoS of interacting hadron gas
\Rightarrow well approximated by non-interacting gas of hadrons and resonances

$$
P(T)=\sum_{i} \int \mathrm{~d}^{3} p \frac{p^{2}}{3 E} f(p, T)
$$

- Plasma EoS (=massless parton gas) with proper statistics and $\mu_{B} \neq 0$:

$$
P(T, \mu)=\frac{\left(32+21 N_{f}\right) \pi^{2}}{180} T^{4}+\frac{1}{9} \mu_{B}^{2} T^{2}+\frac{1}{192 \pi^{2}} \mu_{B}^{4}-B
$$

\Rightarrow First order phase transition by Maxwell construction

- OR parametrized lattice result (only at $\mu_{B}=0$): \Rightarrow match your favourite smoothly to HRG

When to end?

- Particles are observed, not fluid
- How and when to convert fluid to particles?
- i.e. how far is hydro valid?

- Kinetic equilibrium requires scattering rate \gg expansion rate
- Scattering rate $\tau_{\mathrm{sc}}^{-1} \sim \sigma n \propto \sigma T^{3}$
- Expansion rate $\theta=\partial_{\mu} u^{\mu}$
- Fluid description breaks down when $\tau_{\mathrm{sc}}^{-1} \approx \theta$
\rightarrow momentum distributions freeze-out
- $\tau_{\mathrm{sc}}^{-1} \propto T^{3} \rightarrow$ rapid transition to free streaming
- Approximation: decoupling takes place on constant temperature hypersurface Σ_{fo}, at $T=T_{\mathrm{fo}}$

Cooper-Frye

- Number of particles emitted $=$ Number of particles crossing $\Sigma_{\text {fo }}$

$$
\Rightarrow \quad N=\int_{\Sigma_{\mathrm{fo}}} \mathrm{~d} \Sigma_{\mu} N^{\mu}
$$

- Frozen-out particles do not interact anymore: kinetic theory

$$
\begin{aligned}
\Rightarrow \quad N^{\mu} & =\int \frac{\mathrm{d}^{3} \mathbf{p}}{E} p^{\mu} f(x, p \cdot u) \\
\Rightarrow \quad N & =\int \frac{\mathrm{d}^{3} \mathbf{p}}{E} \int_{\Sigma_{\mathrm{fo}}} \mathrm{~d} \Sigma_{\mu} p^{\mu} f(x, p \cdot u)
\end{aligned}
$$

- Invariant single inclusive momentum spectrum: (Cooper-Frye formula)

$$
E \frac{\mathrm{~d} N}{\mathrm{~d} \mathbf{p}^{3}}=\int_{\Sigma_{\mathrm{fo}}} \mathrm{~d} \Sigma_{\mu} p^{\mu} f(x, p \cdot u)
$$

Cooper and Frye, PRD 10, 186 (1974)

Blast wave

(Siemens and Rasmussen, PRL 42, 880 (1979))

- Freeze-out surface a thin cylindrical shell radius r, thickness $\mathrm{d} r$, expansion velocity v_{r}, decoupling time $\tau_{\text {fo }}$, boost invariant
- Cooper-Frye for Boltzmannions

$$
\frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T}}=\frac{g}{\pi} \tau_{\text {fo }} r m_{T} \mathrm{I}_{0}\left(\frac{v_{r} \gamma_{r} p_{T}}{T}\right) \mathrm{K}_{1}\left(\frac{\gamma_{r} m_{T}}{T}\right)
$$

effect of temperature and flow velocity

- The larger the temperature, the flatter the spectra
- The larger the velocity, the flatter the spectra \Rightarrow blueshift
- The heavier the particle, the more sensitive it is to flow (shape and slope)

Elliptic flow v_{2}

spatial anisotropy $\quad \rightarrow \quad$ final azimuthal momentum anisotropy

- Anisotropy in coordinate space + rescattering
\Rightarrow Anisotropy in momentum space

$$
\frac{\partial}{\partial \tau} u_{x}=-\frac{c_{s}^{2}}{s} \frac{\partial}{\partial x} s \quad \text { and } \quad \frac{\partial}{\partial \tau} u_{y}=-\frac{c_{s}^{2}}{s} \frac{\partial}{\partial y} s
$$

Elliptic flow v_{2}

- Fourier expansion of momentum distribution:

$$
\frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T} \mathrm{~d} \phi}=\frac{1}{2 \pi} \frac{\mathrm{~d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T}}\left(1+2 v_{1}\left(y, p_{T}\right) \cos \phi+2 v_{2}\left(y, p_{T}\right) \cos 2 \phi+\cdots\right)
$$

v_{1} : Directed flow: preferred direction
\mathbf{v}_{2} : Elliptic flow: preferred plane

sensitive to speed of sound $c_{s}^{2}=\partial p / \partial e$ and shear viscosity η

Measures of anisotropy

- Spatial eccentricity

$$
\epsilon_{x}=\frac{\left\langle\left\langle y^{2}-x^{2}\right\rangle\right\rangle}{\left\langle\left\langle y^{2}+x^{2}\right\rangle\right\rangle}=\frac{\int \mathrm{d} x \mathrm{~d} y \epsilon \cdot\left(y^{2}-x^{2}\right)}{\int \mathrm{d} x \mathrm{~d} y \epsilon \cdot\left(y^{2}-x^{2}\right)}
$$

- Momentum anisotropy

$$
\epsilon_{p}=\frac{\left\langle T^{x x}-T^{y y}\right\rangle}{\left\langle T^{x x}+T^{y y}\right\rangle}=\frac{\int \mathrm{d} x \mathrm{~d} y T^{x x}-T^{y y}}{\int \mathrm{~d} x \mathrm{~d} y T^{x x}-T^{y y}}
$$

- Au+Au @ RHIC, $b=6$ fm:

- ϵ_{x} decreases during the evolution \Rightarrow elliptic flow is self-quenching
- Most of ϵ_{p} is built up early in the evolution

v_{2}

- Not only collective but also thermal motion
- Elliptic flow v_{2} a.k.a. p_{T}-averaged v_{2} :

$$
v_{2}=\frac{\left\langle p_{x}^{2}-p_{y}^{2}\right\rangle}{\left\langle p_{x}^{2}+p_{y}^{2}\right\rangle}=\frac{\int \mathrm{d} \phi \cos (2 \phi) \frac{\mathrm{d} N}{\mathrm{~d} y \mathrm{~d} \phi}}{\mathrm{~d} N / \mathrm{d} y}
$$

- p_{T}-differential v_{2}

$$
v_{2}\left(p_{T}\right)=\frac{\int \mathrm{d} \phi \cos (2 \phi) \frac{\mathrm{d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T} \mathrm{~d} \phi}}{\int \mathrm{~d} \phi \frac{\mathrm{~d} N}{\mathrm{~d} y p_{T} \mathrm{~d} p_{T} \mathrm{~d} \phi}}
$$

- If $m_{1}>m_{2}, v_{2}\left(m_{1}\right)>v_{2}\left(m_{1}\right)$, but $v_{2}\left(p_{T}, m_{1}\right)<v_{2}\left(p_{T}, m_{2}\right)$!
- No contradiction, since

$$
v_{2}=\frac{\int \mathrm{d} p_{T} v_{2}\left(p_{T}\right) \frac{\mathrm{d} N}{\mathrm{~d} p_{T}}}{\int \mathrm{~d} p_{T} \frac{\mathrm{~d} N}{\mathrm{~d} p_{T}}}
$$

ϵ_{p} VS. v_{2}

- $\mathbf{A u} \mathbf{+ A u}$ @ RHIC, $b=7 \mathrm{fm}$:

- NO clear correspondence
- especially if one includes resonance decays

Why $m_{1}<m_{2} \Rightarrow v_{2}\left(p_{T}, m_{1}\right)>v_{2}\left(p_{T}, m_{2}\right)$?

Simple source:

$$
=v_{x} \bigcirc
$$

$$
\Psi_{-v_{y}}
$$

Each element has unit volume, decouples at the same time at the same temperature. Flow velocity in plane is larger than out of plane, $\left|v_{x}\right|>\left|v_{y}\right|$.

Boltzmann distribution and Cooper-Frye formula:

$$
\begin{aligned}
v_{2}\left(p_{T}\right) & =\frac{\mathrm{I}_{2}\left(\frac{\gamma_{x} v_{x} p}{T}\right)-e^{\frac{E}{T}\left(\gamma_{x}-\gamma_{y}\right)} \mathrm{I}_{2}\left(\frac{\gamma_{y} v_{y} p}{T}\right)}{\mathrm{I}_{0}\left(\frac{\gamma_{x} v_{x} p}{T}\right)+e^{\frac{E}{T}\left(\gamma_{x}-\gamma_{y}\right)} \mathrm{I}_{0}\left(\frac{\gamma_{y} v_{y} p}{T}\right)} \\
& =\frac{C_{1}-e^{\lambda \sqrt{m^{2}+p^{2}}} C_{2}}{C_{3}+e^{\lambda \sqrt{m^{2}+p^{2}}} C_{4}}
\end{aligned}
$$

mass increases, numerator decreases and denominator increases $\rightarrow v_{2}$ decreases

Early thermalization?

- $\epsilon_{p} / \epsilon_{x}$ almost independent of b, i.e. the initial value of ϵ_{x}
- Before thermalization, $\tau<\tau_{0}$ system expands to all directions, ϵ_{x} decreases

(C)Peter F. Kolb
\Longrightarrow Hydrodynamical evolution must start early or final v_{2} is too small
- We do not know if v_{2} could build up before thermalization...

event-by-event

- shape fluctuates event-by-event
- all coefficients v_{n} finite

Success of ideal hydrodynamics

- p_{T}-averaged v_{2} of charged hadrons:

- works beautifully in central and semi-central collisions
- but why is $v_{2, \text { obs }}>v_{2, \text { hydro }}$ in most central collisions?

Success of ideal hydrodynamics

Kolb, Heinz, Huovinen et al ('01) minbias $A u+A u$ at RHIC

not perfect agreement but plasma EoS favored

Lattice EoS

- ideal hydro, $\mathbf{A u}+\mathbf{A u}$ at $\sqrt{s_{N N}}=200 \mathbf{G e V}$
- chemical equilibrium

- s95p: $T_{\text {dec }}=140 \mathrm{MeV}$
- EoS Q: first order phase transition at $T_{c}=170 \mathrm{MeV}, T_{\text {dec }}=125 \mathrm{MeV}$

Thermal models

- Hadronic phase: ideal gas of massive hadrons and resonances
- in chemical equilibrium

- Particle ratios $\Longleftrightarrow T \approx 160-170 \mathbf{M e V}$ temperature
- Evolution to $T \approx 100-120 \mathrm{MeV}$ temperature
\Rightarrow In hydro particle ratios become wrong

Chemical non-equilibrium

- Treat number of pions, kaons etc. as conserved quantum numbers below $T_{c h}$ (Bebie et al, Nucl.Phys.B378:95-130,1992)
- $P=P\left(\epsilon, n_{b}\right)$ changes very little, but $T=T\left(\epsilon, n_{b}\right)$ changes. . .

Effect of $T_{k i n}$ on pions

- Longitudinal expansion does work $(p \mathrm{~d} V) \Rightarrow \frac{\mathrm{d} E_{T}}{\mathrm{~d} y}$ decreases
- If particle \# is conserved, $\left\langle p_{T}\right\rangle$ decreases
- In chemical equilibrium mass energy of baryon-antibaryon pairs is converted to kinetic energy $\Rightarrow\left\langle p_{T}\right\rangle$ increases!

More realistic EoS

- ideal hydro, $\mathbf{A u}+\mathbf{A u}$ at $\sqrt{s_{N N}}=200 \mathrm{GeV}$
- $T_{\text {chem }}=150 \mathrm{MeV}$

- EoS Q: $T_{d e c}=120 \mathrm{MeV}, s_{\text {ini }} \propto N_{b i n} \tau_{0}=0.2 \mathbf{f m} / c$
- s95p, $\tau_{0}=0.8: T_{\text {dec }}=120 \mathrm{MeV}, s_{\text {ini }} \propto N_{\text {bin }}, \tau_{0}=0.8 \mathrm{fm} / c$
- s95p, $\tau_{0}=0.2: T_{\text {dec }}=120 \mathrm{MeV}, s_{\text {ini }} \propto N_{\text {bin }}+N_{\text {part }}, \tau_{0}=0.2 \mathrm{fm} / c$

Summary

- Hydrodynamics is a useful tool to model collision dynamics
- approximation at its best
- but it can reproduce (some of) the data
- we have observed hydrodynamical behaviour at RHIC and LHC

