- Why do we want to measure dileptons in HICs?
 - $\ell^+\ell^-$ penetrating probes, unaffected by final-state interactions
 - shine through for all times of fireball evolution
 - probe not only dilute regions but also hot/dense interior of the medium
 - invariant-mass spectra probe em. current correlator of partons/hadrons
 - directly related to vector-meson properties (in the medium!)
 - directly related to vector current $\Rightarrow \chi SR!?!$

- What are the peaks in the following figure of $R_{e^+e^- \rightarrow hadrons}$?
 - $\sqrt{s} < m_Z$: hadron resonances in the QED cross section
 - ρ⁰, ω, φ, ρ'
 - charmonium states χ/ψ , ψ
 - bottomonium states Y
 - $\sqrt{s} \gtrsim m_Z$: additional contribution from weak neutral current (Z^0)

- Can you explain the horizontal lines (values: 2, 3.333, 3.667)?
 - the dashed green lines are $R_{\text{quark model}} = N_c \sum_f Q_f^2$ (sum runs over quarks with $\sqrt{s} > 2m_f$)
 - the red solid lines include QCD corrections up to three loops

 $\mu^+\mu^-$ spectrum at the LHC (from CMS collaboration)

- What are the "fundamental" and "accidental" symmetries of QCD?
 - fundamental: gauged color symmetry \Rightarrow gluons as gauge bosons
 - accidental: in limit $m_q \rightarrow 0$ chiral $U(1)_L \times U(1)_R \times SU(2)_L \times SU(2)_R$ and scale (dilation) symmetry
 - $U(1)_A$ and scale symmetry anomalously broken
 - $SU(2)_L \times SU(2)_R$ spontaneously broken to $SU(2)_V$
 - χ symmetry also explicitly broken by quark masses
- What's chiral symmetry?
 - independent symmetries for left-handed and right-handed parts of fermions
- Why is it (intuitively) only true for massless quarks?
 - for massless quarks: left/right-handed the same as states with good helicity $\mp 1/2$
 - massive particles \Rightarrow can always boost to frame where helicity is flipped
- What's the main phenomenological consequence of spontaneous symmetry breaking?
 - the appearance of as many massless Goldstone bosons as there are symmetry operations that change the vacuum (but not the corresponding lowest energy eigenvalue)

- What are anomalies? Are they always bad for models?
 - symmetry of a classical field theory that does not survive quantization
 - occurs, because radiative corrections (loop diagrams) must be regularized, but there's no symmetry-conserving regulator
 - only bad if symmetry is vital for the consistency of the model or on phenomenological grounds (empirically known conservation law)
 - "good" case: U(1)_A breaking in QCD/QED
 - predicts correct rate $\pi^0 \rightarrow \gamma \gamma$
 - Adler-Bell-Jackiw anomaly [Adl69, BJ69]
 - NB: here anomaly must shifted to axial-vector current since vector current important for em. and QCD gauge symmetry!

- What's the main meaning of the McLerran-Toimela formula?
 - dilepton or photon production rate from an equilibrated medium
 - connects these production rates with em. current correlator
 - (approximate) validity of vector-meson dominance ⇒ direct relation of rates with in-med. VM spectral functions
- Can one decide from first principles, whether *χ*SR is caused by dropping hadron masses or "resonance melting"?
 - constraints from QCD (and chiral) sum rules admit both dropping VM (ρ) masses or "melting" (broadening)
 - chiral symmetry makes model-independent predictions only for on-shell self-energies at (very) low momenta
 - medium modifications only model independent in the low density/temperature limit
 - need for hadronic models: realization of chiral symmetry not unique; different models predict also either broadening (usual Wigner-Weyl manifestation) or dropping masses (vector manifestation in hidden-local symmetry)
- We need high-precision dilepton data from HIC experiments and good hadronic models to make a case for χ SR!

- Why do we need effective hadronic models to theoretically study electromagnetic probes in HICs?
 - "fundamental" theory is QCD
 - so far we cannot solve confinement/bound-state problems to describe hadrons from first-principle QCD calculation
 - IQCD: can not calculate in-medium current-current correlator in the time-like region
- How do we constrain effective hadronic models theoretically?
 - use symmetries of underlying fundamental symmetry (QCD)
 - constraints from em. gauge invariance, χ S, anomalies,...
- How do we determine all the parameters (couplings, masses, form factors) of the models?
 - use data on "elementary" hadron interactions and electrodynamics of hadrons

- What is left to be predicted from such models?
 - in-medium modifications of hadron-spectral properties/interactions
- What are the most important processes leading to medium modifications of the vector mesons' spectral functions?
 - modification of the "pion cloud"
 - direct baryon interactions (even at low net-baryon density!)
- What are the different dilepton sources that are important in UHICs?
 - Dalitz decay of mesons π^0 , η (chiral anomalies!)
 - decay of light vector mesons, ρ , ω , ϕ
 - \Rightarrow observation of medium modifications of hadrons!
 - comparison of models with data (particularly NA60): vector-meson masses \sim vacuum values but substantial broadening of mass spectra
 - data favor "melting-resonance scenario" over "dropping-mass scenario"
 - thermal dilepton radiation from QGP, particularly in IMR
 - decay of correlated DD decays; important "background" to emission from QGP in IMR!

- Which interesting information can be gained from investigating also $\ell^+\ell^--p_T$ spectra in addition to *M* spectra?
 - through blue shift of (virtual) photons ⇒ weighted average radial flow over whole history of fireball evolution, not only from thermal-freezeout state as for hadrons
- What fundamental properties about the hot and dense medium produced in HICs have we inferred from $\ell^+\ell^-$ data so far?
 - all data compatible with χ SR (no clear proof yet!)
 - kind of "quark-hardon duality" of hadronic dilepton production close to phase transition $T \simeq 160-190$ MeV
 - "resonance-melting scenario" of in-medium vector-meson modification favored compared to "dropping-mass scenario"

- [Adl69] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426. http://dx.doi.org/10.1103/PhysRev.177.2426
- [BJ69] J. S. Bell, R. Jackiw, A PCAC puzzle: $\pi^0 \rightarrow \gamma \gamma$ in the sigma model, Nuovo Cim. A **60** (1969) 47. http://dx.doi.org/10.1007/BF02823296