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Statistical Approach: Gas of Bags

1965 Hagedorn suggested an exponentially growing mass spectrum for heavy
hadrons. The model led to the idea of limiting temperature for hadrons.

1974 MIT Bag model is proposed. It treats hadrons as QG bags.
A.Chodos et. al., Phys. Rev. D 9, (1974) 3471.

1975 Cabbibo and Parisi conjectured that limiting temperature evidences for the
new physics above T_H. The relevant d.o.f. are quarks and gluons.
QCD era begins!
1981 Kapusta showed that MIT Bags have the Hagedorn mass spectrum.
The Gas of Bags model is suggested. It unifies the three previous ideas.
Hence, heavy hadrons = QGP bags.  PRD 23 (1981) 2444.

1981 An exact analytical solution of the Gas of Bags Model (GBM) is found.

The conditions for 1-st, 2-nd order deconfinement PT are discussed.
M.l.Gorenstein, V.K. Petrov and G.M. Zinovjev, Phys. Lett. B 106 (1981) 327.

2004 Shift of the paradigm: from noninteracting quarks and gluons inside QGP to
strongly interacting QGP = sQGP (liquid-like phase)

sQGP era begins!




QCD EoS is unknown beyond CEP
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QGP.isha-deﬁ_nse phase, i.e. it is liquid-like!

But in contrast to our everyday experience (boiling water)
QGP appears at higher temperatures!
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Strategy to build up sQGP Eo$S

® Extend an exactly solvable model with PT
(Gas of Bags Model) to describe QGP liquid

® Use universality properties of liquid-gas EoS
and study QCD phase diagram

® Generalize exact solutions to finite systems
and define finite volume analogs of phases

® Formulate PT signals for finite systems




What do we need to mclude into QGP EoS

Short range repulsion - 20l o ;’ _
otherwise no QGP exists : n=0 /:g _
at high T! e [ Tleeam )
= —— QGP /
Ideal hadron gas has higher <

pressure and energy density
than QGP!
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M.I. Gorenstein, G.M. Zinovjev, V.K. Petrov and V.P. Shelest, Teor. Mat. Phys. 52 (1982)
346.

Interaction: Hard core repulsion a laVDW

*
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.»*222, Fxcluded Volume (per particle) of hard core
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".tential of radius R is 4 eigen volumes!

0. ‘0
L 4 .

Like in SBM

Attraction: is accounted by many sorts of
clusters and by their chemical equilibrium.

Same

-
.
.

Eigen volume approximation
means that bags are deformable!
Is good for high densities!




What do we need to mclude into QGP EoS

Short range repulsion - A . J. ]
otherwise no QGP exists : n=0 /:_{_f _
at high T! "’g T _:E gj )fm3) /: / |
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Ideal hadron gas has higher S
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pressure and energy density _
than QGP! [
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Surface tension of QGP bags since they are similar to liquid droplets!
Use the fact that real gases consist of droplets of all possible sizes!

Model the colbr confinement!




Basics of theVdWaals EOS

NT N?2a 2

P = or (P—|— a’)(V-Nb):NT

— NDb V2 V2
\ ~~ 4 \ﬂ,—/
repulsion attraction

This VdWaals equation cannot be derived rigorously. It is a postulate.

VdWaals EOS is nonstatistical (=classical), but it is simple and

it is a first example of the critical point model!
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Basics of the VdWaals EOS

NT N?2a 2

P = or (P-l— a)(V—Nb):NT

— NDb V2 V2
\ ~~ 4 v
repulsion attraction

Consider the reduced form of the one component VdWaals EOS:

3 1 8 . ‘ van derWaal: I:o&:
(PR + %) (’UR — 5) = §TR with
N X y
T p pe : :
TR =+, PR= —, VR= — " v
T, Pc p - :
Critical endpoint
8a a 1
¢~ 27b° Pe = 27 b2’ Pe = 3b v =volume Oog)
Critical parameters follow from The van der Waals isotherms: the model
( opr ) —0 ( 8%pr ) —0 correctly predicts a mostly incompressible
Ovr ) ’ vy ). liquid phase, but the oscillations in the

phase transition zone do not fit
experimental data.




Basics of the VdWaals EOS
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Critical parameters follow from The van der Waals isotherms: the model
BPR) —0 (82pR) —0 correctly predicts a mostly incompressible
(BUR . g ) liquid phase, but the oscillations in the

phase transition zone do not fit
experimental data.




Law of Corresponding States

Although VdWaals EOS behavior
contradicts
the 2-nd Van Hove axiom of
statistical mechanics it was
important to formulate the law of

corresponding states! .
11 0 1 2 3 4
10wy T=2.00 __ V'

bbb A A A A

X Van der Waal Isotherm T = 0.90
Maxwell's rule eliminates the oscillating behavior of the isotherm in
the phase transition zone by defining it as a certain isobar in that
zone.

Law of corresponding states:

i
|
|
|
|

x Methane ® Iso-pentane

There exist universal functions
o Ethvlene o n-Heptane f o N
Eihane 4 Nirogen (Z=PV/(RT) or similar ones)

® Propane = Carbon dioxide
o n-Butane ® Water |

| that show a universal behavior
i Ld Ld
(005 T0 T5 20 25 30 35 10 15 50 55 60 65 70 on reduced quantities for all
Reduced pressure, 7 b t o th. th
F1a. 5.83. Dependence of the compressibuility ratio Z = PV[RT upon reduced pressure Su S ances Wl m e Same
B for different reduced temperatures T. The fact that the data for a wide variety of

L L '
fluids fall on identical curves supports the law of corresponding states. After Su (1948). univers allty CIaSS o
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Why the Van der Waals EoS is Wrong?

Experiments and exactly solvable models of liquid states show that

The real gases consist of droplets of all possible sizes!
Realgas= @ + : + :0 + 0:0

Only this fact explains the reason of how the liquid appears from gas!

M. Fisher,
Fisher Droplet Model (FDM)- s Ol Describes the gas only!
J.B. Elliott et al,
Condensation of gases nucl-ex/0608022 NO liquid phase!
(2006)

J. P. Bondorf et al,
Statistical Multifragmentation | phys. Rep. 257(1995);

Model (SMM)
[without Coulomb interaction]- | K.A.B., Phys. Part.
Liquid-Gas PT in nuclear matter | Nucl. 38 (2007);

Elaborate model, but liquid
phase has limiting density!

—>problems at high pressure!

Despite all problems these models describe the (tri)critical endpoint
very well, since they account for vanishing surface tension at endpoint!




AntiRandrup & Co

2. The mechanically unstable part of
VdW isotherms does not correspond
to a HOMOGENEOUS matter!

In physics (and in stat.mechanics) the
matter is DISCRETE! Recall systems of
hadrons, of nuclei, of electrons e.t.c.
Homogeneity is
always a question of scale.

Maxwell's rule eliminates the oscillating behavior of the isotherm in
the phase transition zone by defining it as a certain

ZZZZZ
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Van der Waal Isotherm T = 0.90

isobar in that

4

3. J. Randrup & Co convert this homogeneous matter into

droplets with some tricks.

But the elaborate statistical models of phase transitions are dealing not with
. the molecules, but with droplets of all possible sizes. These are relevant dof!

4. In hydrodynamics the evolution of supercooled droplets is well known
from works of L. van Hove, M. Gyulassy, H. Bartz, L.. Csernai e.t.c.

Therefore, it is unclear why J. Randrup & Co need an approximated
(linearized) hydro, if we have deflagration and detonation!
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More to AntiRandrup & Co

5. Suppose we have to accurately model the QCD (tri)critical endpoint
obtained by 1QCD. Then we cannot use the VdWaals EOS because
it has different exponents than QCD (tri)critical endpoint.

VdWaals exponents: o' =0, (3= %, v =1, =3
Recall A. Ivanytskyi talk on exponents Relevant to QCD
2d Ising model |Simple liquids| 3d Ising model O(3) O(4)
& 0 0.09-0.11 [0.1096 + 0.0005| [a’| -0.115(9) |-0.19(6)
3 I 0.32-0.35 |0.3265 £ 0.0001| |73 0.3645(25)] 0.38(1)
~ I 1.2-1.3  |[1.2373 £0.0002| [7| 1.386(4) | 1.44(4)
5 15 1248  |4.7893 £0.0008| [0 | 4.802(37) | 4.82(5)

From my experience the choice of critical indices defines very strong
restrictions on the statistical model parameters! If you use the wrong
exponents, then you cannot properly describe thermodynamics data!
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Even More to AntiRandrup & Co

6. The reason of why VdWaals EOS has a wrong mechanism of
the critical endpoint generation is in the absence of surface tension

7. What should we do in finite systems we are dealing with?
In finite systems the phase transitions (in strict statistical sense)
do not exist. True statistical models do show such a behavior.

However, VdWaals EOS has a phase transition even at vanishing
volume of the system! Therefore, I do not understand such a logic:
according to J. Randrup & Co one has to use VdWaals EOS in a
finite system and, thus, to generate a phase transition which does not

exist in it. What for?

1 { P Statistical EOS
with PT

| Infinite system

P
‘. with PT

Statistical EOS

P VAW EOS
with PT

Svstem of any size'
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Source of Induced Surface Tension

Pressure of NN-sorts particles with hard core radii Rx up to 2-nd virial coefficient

N N
p(T,p) =T Z qbkeﬁ’f&(l - Z Qkn On €T ), ¢n(T) is thermal particle density
k=1 n=1

akn, is the 2-nd virial coefficient between hard core radii Ry and R,,

2
Gin = o (Ri+ Rp)® = (R} + 3R] Ry + SRR + B2)
3 3T

_the pressure is extrapolated to high density as

N N = N & N i N P
p=Y AT o <1—n§:;1akn ?) ~T3 ooy [?—nz:;lakn ?]
_ Substituting a,, and regrouping terms we have

u Hi i 4 N 7 N n
p = T) ¢re?” |[1——mR- > ¢ne? —4wRE- ) anbneTn}
k=1 : 3 n=1 n=1
' N 12273 1 4 3 P 2
==,_Tz¢keT 1—-wR, - — —4nR; - W,
7% v ; 3 T

N
, with Wi(T,p) = Zquske%&
k=1
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Source of Induced Surface Tension

Pressure of NN-sorts particles with hard core radii Rx up to 2-nd virial coefficient

p(T,p) =T Z pre™ (1— Z Qkn On €T ), ¢n(T) is thermal particle density
CIlSlty
n hard core radii Ry and R,

arn is the 2-nd virial coefficient bet
+ 3R;R,, + 3RyR? + R?)

ure is extrapolated to high density as
pI essug,ef

: b
.ry ) Tz:mexp[——z:akn—”]
_ Substituting a,, and regrouping terms we have

N 3 N N
4 . e %
p = T E qbke“Tk ]l =~ geri . E Pne T — 47rRi . E anbne“T}

k—1 ; n=1 n=1

o
1—§wR2-%—4wR§-W1]

N
== .TZ ¢kei’r&

N
, with Wi(T,p) =Y Ripre?
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Hadronic Surface Tension

V. Sagun, A. Ivanytskyi, K.A.B., I.N. Mishustin in preparation
I. Hard core repulsion => the energy part of surface free energy

I1. The attraction => the entropy part of surface free energy

D. Oliinychenko, K.A.B., A.S. Sorin, arXive:1204.0103 hep-ph

Hadron Resonance Gas with surface tension

Surface free energy like in Fisher droplet model:

Foury = 00 (1 — %) 411'R;€, k € {Baryons, Mesons}

Collision energies set, v/Snn | xX2/NDF with surface tension | oo, MeV fm™? Ty, MeV
2.7-7.6 25.8043/31 = 0.832 0.91-102 61
2.7 - 200 103.036/80 = 1.288 —1.37-1072 57
2.7 - 62.4 (no 130 and 200) 85.268 /63 = 1.3534 —3.21-1072 62
12, 17, 62.4, 130, 200 62.1454/35 = 1.776 0.654 147

Table 1: Results of the global fit, including the extracted surface tension parameters.
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Can We Find the Surface Tension
of QG bags!?




Confinement by Color String within sQGP

Internal energy U, entropy S UT,r)=F —-TdF/dT = F+TS
5l
g1
b
7 Ty : String tension for internal energy (V)
¢
1]e
| \EF\\ String tension for free energy (F) — 0
V- ' N=0 —o—
4000 | ao0p > MY ‘e g5 T
3000 - 3000 €$
. 2000 | e Large entropy,S = 20!
1000 ., =>exp(20)=10**8 1?
1000 t . % ‘ _
0F ; A
O e \ e ol e

Very strong interaction! => No color charge separation!
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Confining String = Color Tube

Consider confining string between static g & anti q of length L and radius R<<L
—————————— 1
outer pressure Ptot

color anticolor

Its free energy measured from Polyakov loop correlatoris F.,. = oL

0.8

Confinement means infinite free FA(LT) [GeV]
energy for infinite L 06 |

04 r

 Deconfinement means that
- .string tension vanishes

T=0 e
189 MeV
196 MeV -~ =
199 MeV -~ »
204 MeV — +
209 MeV -~

0.2

o L

Can be rigorously. found by Lattice QCD

0.2 0.4 0.8 1 1.2

Coulomb part f&%fining part
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String lension vs Surface lension
K.A.B., G.M. Zinovjev, Nucl. Phys. A848 (2010)

Consider now this tube as the cylindrical bag of length L and radius R<<L
Neglect effects of color sources and get cylinder FREE ENERGY as:

.
F.(T,L,R) = — p,(T)7®R?’L + 05urs(T)2wRL + T7 In =
3 ~~ Foar s ~ 7 0

thermal sur face e e

small

Equating the cylinder FREE ENERGY to string free energy Fy. = ot L

T R2L
Totr(T) = Osurs (T) 27R — po(T)TR2 It TTm =
0

We got a new possibility to determine QGP bag surface tension directly from
LQCD!

From bag model pressure p,(T = 0) = —(0.25)* GeV*, R = 0.5 fm and
ostr(T = 0) = (0.42)2 GeV? =

oours(T = 0) = (0.2229 GeV)3 4+ 0.5 p, R ~|(0.183 GeV)} ~ 157.4 MeV fm2.
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Surface lension at Cross-over

LQCD ln(% /2L0) C

For vanishing o4, one has o, G

This is due to increase of surface fluctuations =- in general

Our(T)RF - wp >0 for k>0

s ) v e Ty (pn)—T .
Parametrize o4, = 0, .t", where L = T () > 40

and find total pressure and total entropy density
for 4 = 0 (baryonic chemical potential)

i k41
Dtot Pv (T)—UTf() gt G—f() 2t Zst'g N [ 5 T] [ ey C [ S ’I"] ]

Wi T Wi

Ell ]

1
23 1
i 5 o Dot i 1 Ostr | * O Oy = s |:0'st'r'i| k O Osurf k+2 {asw} 0 Osir
TOb=ic - sur i
a T - k O'St,r C(Jk 8 T .f Wi 3 T ek Wi 8 i 2

T <
dominant sitnce ogs.— 0

For finite a'-s-urf and % <0 | = 0Osurf<0 since Sy >0
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Comparison with LQCD

— Assume: we can apply our results to LQCD data with L > R

Foroy, — 0 = R — 2%:urf  gnd lattice entropy is

v

S ssela Ol s . Stotkog.RR st kwp , V1
= 6 T 5 Vi PR ,, . . = e N T __: s g k_:!- R ::’ S gt

= again  Ogr <0

= Sia¢ divergesfor v <1 and R — o0

20



Myste"i"ious Maximum
Entropy and Internal Energy

25 T I T I T I T I T I T 6 T I T I T I T I T I
3 - lattice b 33 N latt ]
" ° 16x4 5t ° 16x4 —
— 3 — L 3 i
| | ] | |
6°x6 a5k ‘|"|' 16"x6 |
- - . 4 | —
15| T 7 350 ]
3 L i
q =]
m - . — — —]
S Of ]
10— ] 2.5 _— __
- 2 -
() 150 ) _
5t = - - 1
T ]
L2 I ’ 051 . i
E g - *
0 ! | * | i | - |- ! |o ! 0 ! | ! | - | - | |* ! |e !
0.1 0.2 03 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
T, GeV T, GeV

. Similarly, consider the fall down of Sj,; due to strong s;,; decrease
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Why Does the String Entropy Diverge at
the Cross-over ?

1

0 0 v

SSt"“ el astr 4 tu—l - v ast'r i
— 7 1_

String entropy diverges for v < 1 and t — +0.

-is FRACTAL for any v # %@ where n = 1, 2, 3, ...

In LQCD the fractal structures are well known.

In this model the fractals appear at t — +0 as surface deformations

due to zero total pressure inside the color tube =>_

=> Atthe cross-over temperature there exist FRACTALS!
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Surface Tension Summary

|. We got a possibility to determine QGP baq surface tension directly from LQCD!

Oours(T = 0) = (0.2229 GeV)3+0.5p, R z-z 157.4 MeV fm~2.

ll. At T= 0 the bag surface tension is rather large!

lll. At the cross-over temperature there exist FRACTALS!

0
Sst’l" i Gstry

L Tt'r , Tt’f’
String entropy diverges for v < 1 and t — +0.

1
0 v

| 4 (04 kE(1—v)

tv—l : [ str ] B
1—v

R power k(lT_V) is FRACTAL for any v # k%n where n = 1,2,3, ...

VI. Like in ordinary liquids: zero surface tension defines T of (tri)critical point!

Teep = Ty = 152.9 + 4.5 MeV K.A.B. et al, arXiv:1101.4549

V. At the cross-over temperature the bag surface tension must be negative!
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Surface Tension Summary

Remarkable fact: chemical FO data for rHIC gives T; = 147 =7 MeV

which is almost the same as color tube model predictions!

Teep = T, = 1529 =+ 4.5 MeV K.A.B. et al, Phys. Atom. Nucl. 75 (2012)

Sstr izt G.(s)tr i tv—l % 7 G.(s)tr £ R—k’(lu_”)
L Tty Tir [zt
String entropy diverges for v < 1 and t — +0.

R power k(lT—V) is FRACTAL for any v # k—l—in where n = 1,2,3, ...

VI. Like in ordinary liquids: zero surface tension defines T of (tri)critical point!

Teep = Ty = 152.9 + 4.5 MeV K.A.B. et al, arXiv:1101.4549

V. At the cross-over temperature the bag surface tension must be negative!
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Surface Tension Summary

Remarkable fact: chemical FO data for rHIC gives T; = 147 =7 MeV

which is almost the same as color tube model predictions!

Teep = T, = 1529 =+ 4.5 MeV K.A.B. et al, Phys. Atom. Nucl. 75 (2012)

Is there any problem with negative surface tension coefficient?

VI. Like in ordinary liquids: zero surface tension defines T of (tri)critical point!

Teep = Ty = 152.9 + 4.5 MeV K.A.B. et al, arXiv:1101.4549

V. At the cross-over temperature the bag surface tension must be negative!
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Surface Free Energy: F=E -TS

To find surface F one has to count for ALL surface deformations together with energy costs
Can be exactly done within Hills and Dales Model for v-volume cluster:

K.A.B. et al, PRE 72 (2005)

Rz v2/3 7, v2/3 _ 0o AS
exp exp(S) =exp x<1 + wy Ny + w D.\D 0.\p - + 2, 3. ete deform: ltlous
T N — & N N’
~ ~ “  Entropy part ~ ~ o 1 Hill 1 Dale

Energy part Sphere's Energy

o v2/3 [0 v2/3
- [_v r ] _ [+v . ] Simplest case (M. Fisher)

Energy part Entropy part

Also one can find supremum and infimum for surface F and surface partition

oco(l —AT)vs > F > oo(1—AgT)vs, Ap~0.28T ', Ay~1.06T "
K.A.B. & Elliott, UJP 52 (2007)

2 T
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Surface Free Energy: F=E -TS

To find surface F one has to count for ALL surface deformations together with energy costs

Can be exactly done within Hills and Dales Model for v-volume cluster:

K.A.B. et al, PRE 72 (2005)

JU2 : UAS

\

2/3
o,
exp | —— exp(S) =exp|— wpy Ny +wpNp 0.\p - + 2, 3. etc dofonnltlous
T N—— e N’
~ ~ “  Entropy part ~ ~ o 1 Hill 1 Dale

Energy part Sphere’s Energy

oov*/? oov?/?
= exp |— ‘ exp |+ ‘

N ] Simplest case (M. Fisher)

Also one can find supremum and infimum for surface F and surface partition

oco(l —AT)vs > F > oo(1—AgT)vs, Ap~0.28T ', Ay~1.06T "
K.A.B. & Elliott, UJP 52 (2007)

Thus, there is NOTHING wrong, if surface F < 0 above critical T!
This means only that entropy dominates!
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Surface Free Energy: F=E -TS

To find surface F one has to count for ALL surface deformations together with energy costs
Can be exactly done within Hills and Dales Model for v-volume cluster:

K.A.B. et al, PRE 72 (2005)

00U 12/3 0',,'1'2/“ : oo AS
exp exp(S) =exp x<1 + wyy \11 +wpNp C\p - + 2, 3. ete deform: ltlons
T N — & N N’
~ ~ “  Entropy part ~ ~ o 1 Hill 1 Dale

Energy part Sphere's Energy

Story is not over yet! The surface tension is even more
% important!

Thus, there is NOTHING wrong, if surface F < 0 above critical T!
This means only that entropy dominates!
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What About Ordinary Liquids!

POCCUNCKAA AKAOEMUA HAYK
HAYYHbIA COBET NO ®U3UKE HU3KOTEMMEPATYPHOW NNA3MbI
/Cekuna TepmMoaMHaAMUYECKUX, ONTUYECKUX U NepeHOCHbIX CBOUCTB/
UCCNEOOBATEJNIbCKUIA LLEHTP "®AUP - POCCUA"
OBbEAVHEHHBLIAN UHCTUTYT BbICOKUX TEMIMEPATYP PAH
MOCKOBCKUN ®U3NKO-TEXHUYECKUA UHCTUTYT

Pun3unKa BelwecTBa C BbICOKOMN KOHLUEHTpauuen aHeprum

Hay4yHo-koopauHaunoHHas Ceccusa "UccnegoBaHna HeuaeanbHOM nnasmbl”

1 -2 pekadbpsa 2010 r., MPE3NAOUNYM PAH, JleHuHckun np-T 32a, MockBa

N. Galamba et al. / Fluid Phase Equilibria 183—184 (2001) 239-245

1. Present day models for surface

o0

006000000000

gy,

o
80000000000

tension are not precise to make some
certain conclusions.

2. So far, the specialists in liquids

('YPr/Yexp'l) ! %

-15
-20

-25

800

S b
-10

000O%%‘AAAAAAAAAAAA‘AA“AA

overlooked that negative values of
the surface tension coefficient can
exist.

900

oLiF mMNaF aKF

1000 1100 1200 1300 1400 1500 1600

T /K

ONaBr AKBr ORbBr x CsBr ¢Lil 0ONal AKI ORblI x Csl

"® 3. The existence of negative surface

®RbF XCsF ©LiCl AKCI ORbCl i CsCl OLiBﬂ tension coefficients does not

contradict to any known fact!

Surface tension deviations calculated as a function of temperature for all the molten alkali halides studied.
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TheVan der Waals Repulsion

The Grand canonical partition (GCP) of n hadronic bags
with the hard-core repulsion of the Van der Waals type (ug = 0)

Z(V,Ty= )

{ Nk}

O(V — 01Ny — ... —vaNy)

[ﬁ [(V — vy Ny — N— 'vnNn) gbk(T)]N’“}

k=1
the particle density of bags of mass mj; and eigen volume v; and degeneracy gz

00 _(p2 A mi)1/2

S1(T) = g, ¢(T) = £ [p2dp e T =geptr Ko (%)

Using the standard Laplace transformation with respect to volume V/,
one gets the isobaric partition with the simple pole:

©.@)

A

9(s.T) = / A,

1
[S g F(S7 T)]
describes hard core repulsion in GC ensemble

with - F(s,T) = Zexp (—wvis)|g;0(T,m;) .
: o

® The O function is VERY important because ensures that bags do not overlap!
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Basic Ingredients of QGBST Model

If the number of bag kinds 1s infinite, there may appear an essential
singularity of the Isobaric Partition. This 1s used in GBM and QGBST
to generate PT. This can be seen as follows (also for non-zero w):

Fbr V — oo the whole analysis is reduced to the
analysis of the Singularities of IP!
After Inverse Laplace transform GCP becomes

1 o—+100
Z(V,T,n) = =— ds Z(s,T,p) 5V =

7 Jo—i00

> Res ( Z(s;, T, p) eSi V) _, ¢V max(sj)

%
S;

Comparing with
pV

T Z(V,T,p) — e T = p(T, p) = Tmax(s}) ,

where a-"'>m§x Re(s;) - the most right singularity.

® PT haﬁpens, if two singularities coincide.

Sl il
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Mass-Volume Spectrum of QGBST Model

Assume: there exist the discrete mass-volume spectrum Fpg (s, T)
of hadrons lighter than M, and the continuous volume spectrum Fy(s,7T)

discrete part continuous part
F(s,T) = Fu(sT) 55 Falsidy = Hagedorn spectrum
S e o HTomy) + (D) Jaldh o <G
/U’T
Jragt

Vo
hadron resonance gas QGbags e K.AB,PRC76(2007)

Term Fy has no s-singularities at any 1" and generates a simple pole only!

pq(T)
i

The bag spectrum Fg(s,T') is chosen to givelan essential singularity sq(1') =

sg(T) defines QGP pressure pg(1') at zero baryonic density (MIT Bag Model).

2k+1
u} iy

Tcep

The (reduced)| surface tension coefficient| o(7) = %2 - {

o, = Const > 0, but can be a smooth function of T (and upg).

® Note, here Tcep = Const, but later it will be us dependent!
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The Role of Surface lension. |

Case I: (T) > 0 is very similar to GBM with 7 > 2.

so(T) <0 at low T' = the simple pole s* = sy (T) \ Parameter ?é can be T or LB
is the rightmost singularity.
4 i )
At very high T the QGP pressure dominates Equatlon for

= s* = sg(T) is the rightmost singularity. Singularities:

PT occurs, when the singularities coincide:

su(T,) = %{:‘Fc) = so(T.) = pQT(;‘Fc) or A — )

which is just Gibbs criterion.

Y

PT order follows from T-derivatives of sy (7T). s Fe i T

Sq S
G + ulk, 1(A,—0) - s u’ (Toep—2kT)o(T)
St T T where G = Fy; + EFQ +—F T ullr (A, —0),
r —Av — o(T)v*
A = sy — sq and ICTG(A,—U)E/CZU oo ey Ul )
pT—a

Vo

Since for o(T') > 0 all integrals are finite = | si(Te) # 875 (T¢), there must exists 1°* order PT.
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The Role of Surface Tension. i

Case II: T' = T, = o(T") = 0 is simply equivalent to GBM. ‘

At s = sg(Teep) there exists PT for 7 > 1. The PT order depends on 7:

e
s =+ Fp(s,T) +  Fol(s,T) with Fo(s,T) = u(T)/dv—<oo, i mris,
/UT
Vo
7 1 G + ukK,_1(A,—0) - s
i = 1 if 2 S -
K+-1(0,0) /UUT_1—>oo, fir ez = Sy S e O
Vo

For 7 > 2 = 8% (Teep) # 50 (Teep), i-e. PT is 17 order.
For 7 < 2= sp(Teep) = 5g(Teep), i-e. PT is 2 or higher order.
Can be shown from second derivative that 2"¢ order PT exists for % o A

In general for (n +1)/n <7 <n/(n—1) (n = 3,4,5,...) there is a n*" order phase transition

sall) = sodo), sulde) = sgllc) ;.
e L (i rrgat n n
ng{ )<TC) i 323 )(TC) ; 5&{)(T0) 7 Sgg)(TC) ;

with SEZ;)(TC)- =oo for (n+1)/n<7<n/(n—1) and

with a finite value of sg") (T,) for = (n+1)/n.
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The Role of Surface Tension. Il

Case III: o(T) < 0 is principally different from GBM

and provides the cross-over existence.
K-(0,—0) diverges irrespective to 7 value!
K+(s —sg(T) > 0,—0) is finite and decreasing function of s
= simple pole is rightmost singularity as long as o(7T") < 0

sg(T') can be rightmost singularity at sg (1) — o
(=T — o0) only!

Compare this with Lattice QCD data and
N =2 SUSY YM (Seiberg-Witten theory):

In Lattice QCD the Stefan-Boltzmann limit for pressure
and energy density of free ¢, ¢, g has not been seen yet
above PT!

N =2 SUSY YM (Seiberg-Witten theory) predicts
such a behavior for finite 7!

0

Parameter & can be T or us

: 4 A
.| Equation for

Singularities:

s*(T) = F(s*,T)
- Y

Sp
€A

So < Sy So < Sy S

3 flavour

2 flavour

T [MeV]

100 200 300 400 500 600

QGBST model can easily handle such a behavior due to cross-over!
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Non-zero Baryonic Densities

Inclusion of baryonic charge does not change the two types of singularities: O Equation for A

pp is baryonic chemical potential, b; is charge of j-th hadron; Singularities:

u(T, up) can be derived from some spectrum p(m, v, b) s*(T) = F(s*,T)
\ J

Fu(s, T, pp) T my ),

Zga >

(©.@)

T T / g 2oleg @ie) s 5T |

Vo

QGP pressure pg = T'sq(T, up) can be chosen in several ways.

For definiteness we use the MIT Bag model pressure

95 10 ,LL32 D ,uB4
R Bl r i
pQ_9OT{2+7T2<T)+97T4<T) -

| Here parameter € is Us

SQ<SH

=S So S

u(T, up), B should obey the sufficient conditions for a PT existence:

F(SQ(Tqu e O) +07 T7 B = O) > SQ<T7:LLB T 0)7
F(sq(T,up) +0,°T, pup) < so(T,us), for all pp > pa.

32



Equality of two singularities gives the Gibbs criterion: T ¢

Phase Diagrams for TriCEP

Assume: the sufficient conditions are satisfied. =

su (T, pp(T)) = sq(T, up(T))

cee o(T) =0
CIroSS—ovclr

QGliquid

= up = pu%(T) phase equilibrium line.

The shape of pp — T' diagram depends on 7 value. o(T)|> 0

Hadrons
As we showed for o(T') > 0 there is 1° order PT -
UB
At T =T,.p = c(T) =0 and PT order depends on 7:
For 7 > 2 it is 1%¢ order PT For 2 > 7 > % it is 2% order PT
= there is a Critical Line in pg — T plane!
. A CELine
Cross—over

Hadrons

QGliquid

T

Cross—over

QGliquid

Hadrons

\
\
\
]
1
1
1
1
1
1

PB
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Surface Tension Induced Phase Transition

The continuity of the solution: at the region up < u%(7eep) is easy to show.

For T' < T.., simple pole is ALWAYS the rightmost singularity

= the change of Fy behavior does not matter. T f cep  o(T)=0
CroSS—over
For T' > T¢., simple pole is the ONLY singularity! = \ QGliqui
L.e. since A =5 —sg(7,up) > 0 and sign of ¢(7') does not matter! o(T)\> 0
All T and pp derivatives of Fy exist and are finite = oA
all T' and pup derivatives of pressure are finite as well. i

Up

For pup > u%(Teep) and T' > T, there exists PT of 274 or higher order.

Consider the limit T'— Tpep +0 or 72 = —o(T) >0 K.A.B., PRC (2007) 76

There are two possibilities: either v = v2A~* — Const or v=~v>A"* — 0

(otherwise solution s* does not exist)

: 7 & e ol k Ao~y
Assuming that A = Ay* + O(**t), = g—% = g_% [AO"Y O )] s (22 (J;—)Tcep; ’

0A  Gs + UK (A, 7)) 29 i AE TS 7

oT RGN A2 wK2a( )

2y AV W K0, (1,0) = Ky o1 ,.(1,0)]
(r—=1—2)K,—1(1,v)

And comparing with
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Results for TriCEP

Our group has calculated the critical indices for this case and
found that the phase diagram must look like shown below
A. Tvanytskyi, NPA(2012) 880

Change in notations: o < X

Hadrons+QGbags = QGP (T,ug) <0

2-nd order phase transition

— T

QGliquid

Cross-over

Z(Ta UB) >0

Hadrons

,__vh !.«L B
What about the critical endpoint?
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CEP Generation

Main idea:
to match the curves of deconfinement PT and X = 0!

Prediction:
the power law in V-distribution of bags will be not just at CEP
as one would expect, but in the mixed phase with X = 0!

QGbags+hadrons=QGP K.A.B., VK. Petrov, G.M. Zinovjev,
(T, pug) <0 Phys. Part. Nucl. Lett. (2012) 9
' B

Cross-over

Z(Ta UB) >0

Hadrons

UB
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Structure of singularities for CEP

Singularities of the IP and corresponding graphical solution of Eq.

sx = F(sx,T,up).
“ E(Ta :UJB) >0

SQ<SH SQ=SH So

Case of triCEP PRC 76 (2007)

X(T,up) >0 0 <0

Y

Se<Su Se=Su  Sq S

Case of CEP arXiv:0904.4420

Parameter £ can be either T or upg.
For example, if £ is T, then &4 <1, & =1 and &g > Te.
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Structure of singularities for CEP

* Thus, for the CEP case the rightmost singularity below and above
PT line is a SIMPLE POLE!

| S(T, ug) > 0 S(T,pg) >0 0 <0

Y

S SQ<SH SQ=SH SQ

Case of triCEP PRC 76 (2007) Case of CEP arXiv:0904.4420

Parameter £ can be either T or up.
For example, if £ is T, then &4 <1, & =1 and &g > Te.
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Sufficient conditions for CEP existence
Let’s denote 7= = Tx(us) = 0 and same for p and p

i 4
Density of pure phases; p* = S%B, where p*=TF(2 T, ug).

=
L it s L Al (A ) O . (k5

+ ot (’M
i OF
1+ UL,-_]_(A:l:, Zj:) g a—SH

oo dv 2o K
where A% = st —so(T%, up) and 1. (A%, 5%) = | e-ATv—3
(%

T—W

Using A*|y—r. =0 and X% 7. =0 =

<az— az+> ul-_..(0,0)
Ap =

Op O ) 14wl 1(0,0) — 2x
oes not vanish!

T:TC

Condition for 15t order deconfinement PT existence:
finiteness of integrals I-_,(0,0) and I-_1(0,0) and then = > 2.

)

38



Sufficient conditions for CEP existence
Let’s denote 7= = Tx(us) = 0 and same for p and p

__Op i B p:t
Density of pure phases: p* a— where pT==TF(+,T,up).

8,9@ s

B+ LA, TH) + Ful, (A%, TF) - Frul (A% )

+ _ ot (’M
L U’IT—].(A:l:7 T

)

Thus, for the CEP case the |-st order deconfinement PT is a
SURFACE TENSION induced PT!

Using Ai|T=TC =0 and Zi|T=TC —r & =

(az— az+> ul_,.(0,0)
Ap =

Op O ) 14wl 1(0,0) — 2x
oes not vanish!

T:Tc

Condition for 15t order deconfinement PT existence:
finiteness of integrals I-_,(0,0) and I-_1(0,0) and then = > 2.
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Conclusions

The relation between the string tension and the surface
tension of QGP bags is found! It allows us to determine the
surface tension of QGP bags directly from Lattice QCD.

The surface tension of QGP bags at T = 0 is large and at the
cross-over T ~ 170 MeV the surface tension is negative!

At the cross-over T ~ 170 MeV there exist fractals =>
fractal surfaces!

On an example of exactly solvable models it is shown that
the surface tension of QGP bags plays an important role
“in generation of the (tri)critical endpoint!
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Thanks for your attention!
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