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Experiments on A+A Collisions
SIS100 (GSI) 
    C.M.S. energy/nucl  2 - 4 GeV
AGS (BNL)                    4.9 GeV
SPS (CERN)          6.1 - 17.1 GeV
RHIC (BNL)  62,  130, 200 GeV

Ongoing  HIC experiments
LHC (CERN)  > 1 TeV (high energy)
RHIC (BNL)  low energy
SPS (CERN)   low energy

Future HIC experiments
NICA(JINR, Dubna) 
SIS300 = FAIR (GSI)

Completed}
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There is some space left!

STAR PHENIX

RHIC Detectors
RHIC - Relativistic Heavy Ion Collider (Brookhaven, USA) 
center of mass energy up to 200 GeV/nucleon
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Single Collision at RHIC Energies

2000-10000 particles are registered and identified in each event!
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RHIC Stages 

CGC Initial
Singularity Glasma sQGP Hadron Gas

CGC - color glass condensate (coherent high density gluons)

quantum 
fluctuations

local 
thermalization

strongly 
interacting 

QGP 

expansion and decay 
of resonances

proper
time:

τ≃0-0.1

   fm/c

τ≃0.1-1.

    fm/c

τ≃1.-10.

     fm/c

τ>10.

   fm/c

Probe QGP – a new form of matter predicted by Quantum Chromodynamics (QCD)

1 fm ≃ 10   m-15
1 fm/c ≃ 3.3 10   s

-23
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The Complexity of RHICs
During A+A collision the nuclear matter (in general) has several 
transformations:        ... ➔ Two nuclei (cold nuclear matter)
➔ Evolution of  excited NON-equilibrated q, g plasma 

➔ EXPANSION of the equilibrated q, g plasma 

➔ Transformation into hadrons (HADRONIZATION), partial or complete 
(cross-over or PT), DURING expansion

➔ Kinetic freeze-out (spectra of secondaries do not change) 

➔ Detection ➔ Analysis ➔ Acceptance of measurement ➔ Publication 
➔ Comparison with theoretical model ➔ ... 

Each stage (after arrow) requires a working MODEL! 
The worst is that some stages HAPPEN simultaneously!
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Goals of HIC experiments

• To learn QCD matter Equation of State = QCD matter phase 
diagram

• Understanding such fundamental phenomena as:                      
color confinement, nature of deconfinement, nature of chiral 
symmetry restoration

• Understanding the Early Universe history, the properties of 
neutron, quark, strange e.c.t. stars + exotica (strangelets, dibaryons)

Since QCD is not solved, we have to use lattice QCD, 
other theoretical and phenomenological models
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 sQGP is the most perfect fluid!
Anti de Sitter Conformal Field Theory (AdS/CFT) is 

holographically dual to QCD = string model
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Figure 2: (a) False color absorption images of a strongly interacting degenerate Fermi gas of ultracold
6Li atoms as a function of time after release from a laser trap. From O’Hara et al.[7] (b)“Quantum
viscosity” in strongly-interacting Fermi gas α = η/h̄ n (trap-averaged). (c) Same data for the shear
viscosity as η/h̄s in units of the entropy density s as a function of energy E. The lower green dotted
line shows the string theory prediction 1/(4π). The light blue bar shows the estimate for a quark-gluon
plasma (QGP) while the blue solid bar shows the estimate for 4He, near the λ- point.

the trap is switched off, the atoms in a weakly coupled gas simply fly away with their thermal/quantum
velocities, displaying isotropic angular distribution of velocities irrespective of the trap shape. However
in strongly coupled regime, with the particle mean free path smaller than the system size, hydrodynam-
ical flow develops. Deformed traps thus develop “elliptic flows” in the direction of maximal pressure
gradient, in a way analogous to what is happening in heavy ion collisions: see Fig.2(a). This is by no
means trivial: the interparticle distances are about 1000 times the atomic size, and the total number of
atoms is only ∼ 104 (only few times more than in central heavy ion collisions at RHIC): similar number
of water molecules would not show any hydro!

The next questions was whether one can use hydrodynamics quantitatively, find out its accuracy
and quantify the viscosity. From “released traps” the experiments switched to quadrupole vibrational
modes: as the trapped system has a cigar-shape with much weaker focusing along z axes compared
to axial ones, there is softer z-vibrations and higher frequency “axial” mode. I will not go into vast
literature and simply say that the value of the vibrational frequencies are indeed given by hydro, reaching
near-percent accuracy at the Feshbach resonance point (where |a| =∞).

The first study of viscosity has been made by Gelman, myself and Zahed [8]: from available data on
two different vibrational modes – z-mode and axially symmetric radial mode of a cigar-shaped atomic
cloud – we tried to deduce viscosity and found that the values are roughly consistent with each other.
Instead of going into details of that work, let us discuss what one would expect based on “universality”
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min  -----------------     =  ----
shear viscosity         1

entropy density      4π

Red dots: cold atoms in traps

Shear viscosity=means 
momentum transfer between 

fluid layers via a unit area
η  <=>  <p> <free path> <particle 
density>

s   <=>   <number of states/particle>         
<particle density>
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 Viscosity “measurement’’
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FIG. 8: (Color online) Comparison of hydrodynamic models to experimental data on charged
hadron integrated (left) and minimum bias (right) elliptic flow by PHOBOS [85] and STAR [87],
respectively. STAR event plane data has been reduced by 20 percent to estimate the removal

of non-flow contributions [87, 88]. The line thickness for the hydrodynamic model curves is an
estimate of the accumulated numerical error (due to, e.g., finite grid spacing). The integrated v2

coefficient from the hydrodynamic models (full lines) is well reproduced by 1
2ep (dots); indeed, the

difference between the full lines and dots gives an estimate of the systematic uncertainty of the
freeze-out prescription.

experimental data from STAR with the hydrodynamic model is shown in Fig. 8.
For Glauber-type initial conditions, the data on minimum-bias v2 for charged hadrons

is consistent with the hydrodynamic model for viscosities in the range η/s ∈ [0, 0.1], while
for the CGC case the respective range is η/s ∈ [0.08, 0.2]. It is interesting to note that
for Glauber-type initial conditions, experimental data for both the integrated as well as the
minimum-bias elliptic flow coefficient (corrected for non-flow effects) seem to be reproduced
best7 by a hydrodynamic model with η/s = 0.08 " 1

4π . This number has first appeared in the

7 In Ref. [22] a lower value of η/s for the Glauber model was reported. The results for viscous hydrodynamics

shown in Fig. 8 are identical to Ref. [22], but the new STAR data with non-flow corrections became
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 Non-central collision:

 Number of participants  Transverse momentum 

 Comparison of hydro 
simulations with 

experimental data (RHIC)

 Elliptic flow coefficient
 stores information about

early stage of collision!
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 Lattice QCD
70-th & 80-th  
           K. Wilson, J. Kogut, M. Creutz and others
suggested to discretize space-time continuum and to consider   
q & g fields on lattice: quarks (q) are located in sites and gluons 
(g) are existing on links, connecting the sites.

q q qg
g

g
g

g

g

Then field integrals can be
approximated by integrals of 
large, but finite dimension 
and can be calculated 
NUMERICALLY, using 
Monte Carlo method!

See Prof. M. Ilgenfritz lecture
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Lattice QCD and QCD inspired models 
with Zero Quark Masses  

The Phase Diagram of QCD and the Critical Point 2943

to point (2) of Section 2.2) 1. The point where this happens is the tricritical
point. The resulting phase diagram is illustrated in Fig. 2.
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, GeV10

nuclear
matter

µB
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    MIT bag,

    NJL,

    RM, ...)

vacuum quark matter

  (lattice MC)

3cr. point

2nd order transition

QGP

symmetric (disordered) phase

broken (ordered) phase

Fig. 2. Phase diagram of QCD with two massless quarks. The chiral symmetry
order parameter qualitatively distinguishes two phases: 〈ψ̄ψ〉 #= 0 in the broken
phase and 〈ψ̄ψ〉 = 0 in the symmetric phase.

TTc

H = 0

H = 0

M

Fig. 3. The order parameter vs temperature in a Curie ferromagnet with zero and
non-zero applied magnetic field. In QCD, the chiral order parameter 〈ψ̄ψ〉 behaves
similarly as a function of T at mq = 0 and mq #= 0.

Once the quark mass mq is turned back on, the distinction between
the symmetric and broken phases is blurred, and the second order phase
transition is replaced by a smooth crossover. The situation is analogous
to the ferromagnet — an arbitrary small magnetic field (the analog of mq)

1 We also assume that there is only one transition between the broken and symmetric
phases.
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 Deconfinement phase transition

 Nuclear liquid-gas phase transition
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Lattice QCD and QCD inspired models 
with Non-Zero Quark Masses  

2950 M. Stephanov

TABLE I

Theoretical predictions of the location of the critical point. The predictions for
tricritical point are indicated as ‘TCP’. The last column gives the corresponding
label on Fig. 6.

Source (T, µB), MeV Comments Label

MIT Bag/QGP none only 1st order —

Asakawa,Yazaki ’89 (40, 1050) NJL, CASE I NJL/I

ibidem (55, 1440) NJL, CASE II NJL/II

Barducci, et al. ’89-94 (75, 273)TCP composite operator CO

Berges, Rajagopal ’98 (101, 633)TCP instanton NJL NJL/inst

Halasz, et al. ’98 (120, 700)TCP random matrix RM

Scavenius, et al. ’01 (93,645) linear σ-model LSM

ibidem (46,996) NJL NJL

Fodor, Katz ’01 (160, 725) lattice reweighting I LR-1

Hatta, Ikeda, ’02 (95, 837) effective potential (CJT) CJT

Antoniou, Kapoyannis ’02 (171, 385) hadronic bootstrap HB

Ejiri, et al. ’03 (–,420) lattice Taylor expansion LTE

Fodor, Katz ’04 (162, 360) lattice reweighting II LR-2

NJL

CJT

RM

CO

T

µB

LTE

LR-1

LR-2

HB

NJL-2

NJL-1

LSM

NJL-inst
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Fig. 6. Theoretical (models and lattice) predictions for the location of the critical
point. The labels correspond to Table I. The two dashed lines indicate the mag-
nitude of the slope d2T/dµ2 obtained by lattice Taylor expansion [39]. The upper
curve agrees with Ref. [40]. The lower curve corresponds to smaller quark mass.
Errors/uncertainties are not shown. The open circles indicate location of freezeout
points at various collision energies (see Fig. 8).
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There are technical difficulties 
to extend LQCD to nonzero
baryonic chemical potentials. 
=> Phenomenological models
are unavoidable!

Green dots are lattice QCD results.
Red circles are chemical freeze-out 
points  
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 Confinement by Color String before sQGP

Consider confining string between static q & anti q of length L and radius R<<L

Its free energy measured from Polyakov loop correlator is 

3

Fstr = σstrL

Fcyl(T, L, R) ≡ − pv(T )πR2L︸ ︷︷ ︸
thermal

+ σsurf(T )2πRL︸ ︷︷ ︸
surface

+ T τ ln
V

V0︸ ︷︷ ︸
small

.

Deconfinement means that 
string tension vanishes

Can be rigorously  found by Lattice QCD

Introduction Free energies Checks and Balances Free energy at infinite separation Entropy and Internal Energy Renormalized Polyakov Loop Quarkonia (quenched) Charmonium Summary
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• No medium effects up to 0.3fm

• Strong effects at r > 0.4fm

Coulomb part confining part
L

L

q q-

color anticolor

Confinement means infinite free 
energy for infinite L 

Confinement = absence of free color charges 

 At T=0 the string tension = 12 tons!
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 Confinement by Color String within sQGP
 Internal energy U, entropy S

13

TABLE V: Simulation parameters and screening masses for the large lattice 322 ×48×6. Lattice scales are estimated by Refs.
[34, 35].

β a−1[GeV] T[MeV] T/Tc mm/T me/T
7.0 7.64 1274 4.97 1.128(78) 2.556(156)
7.5 13.8 2303 8.99 1.014(54) 2.178(144)
8.0 24.7 4127 16.12 0.984(60) 2.256(120)
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c
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Electric (Large lattice)
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FIG. 13: The temperature dependence including higher temperature points on the large lattice 322 × 48 × 6.

IV. CONCLUSIONS

We have measured the gluon propagators and obtained the electric and magnetic masses by lattice QCD simulations
in the quenched approximation for SU(3) between T = Tc and 6Tc. Features of the QGP in this temperature region
will be extensively studied theoretically and experimentally in the near future.

Our screening mass studies are the first reliable measurement in SU(3) lattice calculation. We mainly investigate
the temperature dependence for the electric and magnetic masses which do not vanish on 202 × 32 × 6 lattices. In
all temperature regions we find that the electric mass me is always larger than the magnetic one mm, except near
critical temperature point. As the temperature goes down toward Tc, me/T drops down quickly, while mm/T is still
going up. Consequently, using data above T/Tc ∼ 1.5 we conclude that the scalings me ∼ gT and mm ∼ g2T work
well. Furthermore, a HTL resummation calculation has recently been developed and compared with nonperturbative
lattice simulations. We have also compared our numerical results with LOP and HTL resummation and find a good
improvement of the HTL electric mass. These comparison studies of SU(3) screening masses qualitatively seem to
agree with the case of SU(2) [14].

The electric masses obtained here are not consistent with those obtained by heavy qq̄ potential calculations from
an SU(3) Polyakov loop correlator at finite temperature in Refs. [17, 18]. In Ref. [18], the authors did extensive
analyses with three different temporal extents and two different gauge actions, obtaining a very reliable potential as
a function of the temperature. They observe that the potential above Tc cannot be described properly by the leading
order perturbation calculation up to a few Tc: They exclude the two-gluon exchange as the dominant screening
mechanism, and suggest that some kind of one-gluon exchange may describe the potential effectively as a result of
the complex interaction, and that at about (1.5 − 3)Tc a mixture of one- and two-gluon exchange may explain the
behavior. Therefore, due to the ambiguity of the fitting assumptions, it is not clear whether we can compare our
screening masses directly with those obtained by the potential calculation.

In order to investigate the nature of the QGP, especially the excitation modes in the plasma, Datta and Gupta
recently calculated glueball masses at finite temperature and made an interesting observation. They measured the
screening masses of A++

1 (scalar) and A−−
2 (glueball), which allow two- and three-gluon exchange, and their ratio ∼ 1.7

is near 3/2. The A−−
2 mass is twice that obtained by Kaczmarek et al, and shows similar temperature dependence.

There are now several nonperturbative methods to study QGP: our direct measurement of the gluon propagators,
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Figure 16: (upper left) Temperature dependence of electric and magnetic screening masses according
to Nakamura et al [76]. The dotted line is fitted by the assumption, mg ∼ g2T . For the electric mass,
the dashed and solid lines represent LOP and HTL re-summation results, respectively. (upper right)
Temperature dependence of the effective string tensions of the free and potential energies σF , σV . (down)
The energy and entropy (as TS∞(T )) of two static quarks separated by large distance, in 2-flavor QCD
according to [77].

Studies of the static Q̄Q potential have been extended to finite T . In particular, deconfinement
temperature Tc is defined as a disappearance of the linear behavior as a signal of deconfinement at
T > Tc in the corresponding free energy F (T, r). Bielefeld-BNL group has published lattice results for
static Q̄Q free energy, as well as internal energy and entropy

V (T, r) = F − TdF/dT = F + TS (36)

at T both below and above Tc, see [79, 80].
Remarkable features of these results include:

1. The linear (in r) part of the potentials. Their effective tensions are shown in Fig.16(top right).
While that for free energy vanishes at Tc (by definition), that for potential energy extends till at least
about 1.3Tc, with a peak values about 5 times (!) the σvac.. Similar behavior is seen in entropy,while
canceling in free energy. The widths of these peaks provide a natural definition of “near-Tc” region as
T/Tc = 0.8− 1.2
2.Although potentials at large distances r →∞ are finite V (T,∞), near Tc their values reach very large
magnitudes, see Fig.16(down). The corresponding large entropy S(Tc,∞) ≈ 20 means that really huge
∼ exp(20) number of states is involved ;
The origin of this large energy and entropy associated with static Q̄Q pairs near Tc, remains mysterious:
many attempts (e.g. [81]) failed to explain it. Below we will return to this phenomenon in connection
with “magnetic plasma” scenario.

Before looking for explanations, however, let us focus on physical difference between F and U, based
on papers by Zahed, Liao and myself [82, 83], in which they are related to what happens for slow and
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TABLE V: Simulation parameters and screening masses for the large lattice 322 ×48×6. Lattice scales are estimated by Refs.
[34, 35].

β a−1[GeV] T[MeV] T/Tc mm/T me/T
7.0 7.64 1274 4.97 1.128(78) 2.556(156)
7.5 13.8 2303 8.99 1.014(54) 2.178(144)
8.0 24.7 4127 16.12 0.984(60) 2.256(120)
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FIG. 13: The temperature dependence including higher temperature points on the large lattice 322 × 48 × 6.

IV. CONCLUSIONS

We have measured the gluon propagators and obtained the electric and magnetic masses by lattice QCD simulations
in the quenched approximation for SU(3) between T = Tc and 6Tc. Features of the QGP in this temperature region
will be extensively studied theoretically and experimentally in the near future.

Our screening mass studies are the first reliable measurement in SU(3) lattice calculation. We mainly investigate
the temperature dependence for the electric and magnetic masses which do not vanish on 202 × 32 × 6 lattices. In
all temperature regions we find that the electric mass me is always larger than the magnetic one mm, except near
critical temperature point. As the temperature goes down toward Tc, me/T drops down quickly, while mm/T is still
going up. Consequently, using data above T/Tc ∼ 1.5 we conclude that the scalings me ∼ gT and mm ∼ g2T work
well. Furthermore, a HTL resummation calculation has recently been developed and compared with nonperturbative
lattice simulations. We have also compared our numerical results with LOP and HTL resummation and find a good
improvement of the HTL electric mass. These comparison studies of SU(3) screening masses qualitatively seem to
agree with the case of SU(2) [14].

The electric masses obtained here are not consistent with those obtained by heavy qq̄ potential calculations from
an SU(3) Polyakov loop correlator at finite temperature in Refs. [17, 18]. In Ref. [18], the authors did extensive
analyses with three different temporal extents and two different gauge actions, obtaining a very reliable potential as
a function of the temperature. They observe that the potential above Tc cannot be described properly by the leading
order perturbation calculation up to a few Tc: They exclude the two-gluon exchange as the dominant screening
mechanism, and suggest that some kind of one-gluon exchange may describe the potential effectively as a result of
the complex interaction, and that at about (1.5 − 3)Tc a mixture of one- and two-gluon exchange may explain the
behavior. Therefore, due to the ambiguity of the fitting assumptions, it is not clear whether we can compare our
screening masses directly with those obtained by the potential calculation.

In order to investigate the nature of the QGP, especially the excitation modes in the plasma, Datta and Gupta
recently calculated glueball masses at finite temperature and made an interesting observation. They measured the
screening masses of A++

1 (scalar) and A−−
2 (glueball), which allow two- and three-gluon exchange, and their ratio ∼ 1.7

is near 3/2. The A−−
2 mass is twice that obtained by Kaczmarek et al, and shows similar temperature dependence.

There are now several nonperturbative methods to study QGP: our direct measurement of the gluon propagators,
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a function of the temperature. They observe that the potential above Tc cannot be described properly by the leading
order perturbation calculation up to a few Tc: They exclude the two-gluon exchange as the dominant screening
mechanism, and suggest that some kind of one-gluon exchange may describe the potential effectively as a result of
the complex interaction, and that at about (1.5 − 3)Tc a mixture of one- and two-gluon exchange may explain the
behavior. Therefore, due to the ambiguity of the fitting assumptions, it is not clear whether we can compare our
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Studies of the static Q̄Q potential have been extended to finite T . In particular, deconfinement
temperature Tc is defined as a disappearance of the linear behavior as a signal of deconfinement at
T > Tc in the corresponding free energy F (T, r). Bielefeld-BNL group has published lattice results for
static Q̄Q free energy, as well as internal energy and entropy
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at T both below and above Tc, see [79, 80].
Remarkable features of these results include:

1. The linear (in r) part of the potentials. Their effective tensions are shown in Fig.16(top right).
While that for free energy vanishes at Tc (by definition), that for potential energy extends till at least
about 1.3Tc, with a peak values about 5 times (!) the σvac.. Similar behavior is seen in entropy,while
canceling in free energy. The widths of these peaks provide a natural definition of “near-Tc” region as
T/Tc = 0.8− 1.2
2.Although potentials at large distances r →∞ are finite V (T,∞), near Tc their values reach very large
magnitudes, see Fig.16(down). The corresponding large entropy S(Tc,∞) ≈ 20 means that really huge
∼ exp(20) number of states is involved ;
The origin of this large energy and entropy associated with static Q̄Q pairs near Tc, remains mysterious:
many attempts (e.g. [81]) failed to explain it. Below we will return to this phenomenon in connection
with “magnetic plasma” scenario.

Before looking for explanations, however, let us focus on physical difference between F and U, based
on papers by Zahed, Liao and myself [82, 83], in which they are related to what happens for slow and
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 Very strong interaction! => No color charge separation!

Large entropy S = 20! 
=> exp(20) =10**8 !?
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  sQGP is a strongly interacting liquid !?

Depending on magnitude of this parameter Γ classical plasmas have the following regimes:
i. a weakly coupled or gas regime, for Γ < 1;
ii. a liquid regime for Γ ≈ 1− 10;
iii. a glassy liquid regime for Γ ≈ 10− 100;
iv. a solid regime for Γ > 300.

Existence of permanent correlation between the particles is seen in the simplest way via density-
density correlation functions

G(r, t) =
1

N

〈
N∑

i=1

N∑

j=1

δ ("x + "xi(0)− "xj(t))

〉

, (2)

with N is the number of particles, "xi(t) is the position of the i-th-particle at time t. G(r, t) characterizes
the likelihood to find 2 particles a distance r away from each other at time t. Here are some examples,
from our own (non-Abelian) MD simulations [5], which show that liquid regime demonstrate nearest-
neighbor peaks, and crystals have peaks corresponding to longer range order. They also show “healing”
of correlations with time in gases, but much less so in liquids and solids.
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Figure 1: (Color online) Gd correlation function for Γ = 0.83, 31.3, 131, respectively. Red circles corre-
spond to t∗ = 0, and blue squares correspond to t∗ = 6.

The case of small Γ is widely discussed in statistical mechanics courses: let me just remind the reader
that it is in this case when one can use Boltzmann eqn, cascades and other simple tools appropriate
for a gas. Unlike gases and solids, the interplay of local order and randomness at large distances makes
liquids difficult to treat theoretically4. Thus, in spite of their crucial importance for a lot of chemistry
in general and our life in particular, most physics and statistical mechanics courses tend to either omit
them completely or tell as little as possible about them. It is possibly worth reminding heavy ion
practitioners, that for liquids neither Boltzmann equation nor cascades can be used because particle are
strongly correlated with several neighbors at all times. The very idea of “scattering” and cross section
involves particles coming from and going to infinity: it is appropriate for dilute gases but not condensed
matter where interparticle distances do not exceed the range of the forces at any time.

4I heard an opinion, ascribed to a lecture of V.Weisskopf, that if theorists would invent the Universe from scratch,
without any experiment, they would never think about liquids.
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DeConfinement = absence of free color charges too! 
=>  sQGP =  clusters of q anti-q, qqq and so on states!

=> sQGP is liquid like phase! 

  sQGP is a strongly interacting liquid !?
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them completely or tell as little as possible about them. It is possibly worth reminding heavy ion
practitioners, that for liquids neither Boltzmann equation nor cascades can be used because particle are
strongly correlated with several neighbors at all times. The very idea of “scattering” and cross section
involves particles coming from and going to infinity: it is appropriate for dilute gases but not condensed
matter where interparticle distances do not exceed the range of the forces at any time.
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Depending on magnitude of this parameter Γ classical plasmas have the following regimes:
i. a weakly coupled or gas regime, for Γ < 1;
ii. a liquid regime for Γ ≈ 1− 10;
iii. a glassy liquid regime for Γ ≈ 10− 100;
iv. a solid regime for Γ > 300.

Existence of permanent correlation between the particles is seen in the simplest way via density-
density correlation functions

G(r, t) =
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with N is the number of particles, "xi(t) is the position of the i-th-particle at time t. G(r, t) characterizes
the likelihood to find 2 particles a distance r away from each other at time t. Here are some examples,
from our own (non-Abelian) MD simulations [5], which show that liquid regime demonstrate nearest-
neighbor peaks, and crystals have peaks corresponding to longer range order. They also show “healing”
of correlations with time in gases, but much less so in liquids and solids.
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Plasma Parameter  Interaction energy 
kinetic energy=  ------------------------ =  U/T

QGP range!

E. Shuryak, Prog. Part. Nucl. Phys. (2009) 62 
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QCD EoS is unknown beyond CEP 
The Future of Quark Matter at RHIC

higher luminosity + detector upgrades !

how does this new plasma work? Barbara Jacak

Stony Brook

Temperature
T

baryonic 
chemical
potential

QGP is a dense phase, i.e. it is liquid-like!

But in contrast to our everyday experience (boiling water) 
QGP appears at  higher temperatures!

Phase transition

Cross-over
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quark m
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and for massless 

quarks

expected from  
QCD-like 
models

What are other arguments for 
phase transition in QCD?
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If sQGP is a liquid, then

• Can we find some general arguments that transition to sQGP is,       
indeed,  a PT? 

• What is the order of this PT?

• How to describe the strongly interacting liquid EoS?
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Statistical Bootstrap Model

The first evidence for ρ(E) = C eαE density of states was found
numerically in 1958 having 15 particles only!

G. Fast, R. Hagedorn and L. W. Jones, Nuovo Cimento 27 (1963) 856;

G. Fast and R. Hagedorn, Nuovo Cimento 27 (1963) 208

Theory (prediction): E2 dσel

dω
|90≈ A E e−3.17E (1)

... And only in 1964 it was the first experimental evidence in
favor of that. J. Orear, Phys. Lett. 13 (1964) 190

For large angle p + p → π + d at 2.4 GeV ≤ E ≤ 6.8 GeV

Consequence: For entropy S = α En ⇒ T = 1/(n α En−1)

Then T = Const leads to n = 1 ⇒ ρ(E) = C eS = C eαE

i.e. exponentially growing spectrum!
R. Hagedorn, Suppl. Nuovo Cimento 3 (1965) 147

Consider Boltzmann n-particle Grand Canonical Partition (GCP)

σn(E, V, m) =
1

n!

[

V

(2π)3

]n ∫

δ

(

E −
n

∑

i=1

Ei

)

n
∏

i=1

(4πp2
i dpi) (2)

Its Laplace transform is the n-particle partition

Zn(T, V, m) =
1

n!

[

V

(2π)3

]n
[

4π

∫

e−
√

p2+m2

T p2 dp

]n

(3)
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• Stat. Hadronization 
Model: T = 175+/-15 MeV 
F.Becattini,A.Ferroni, Acta. Phys. 
Polon. B 35 (2004)         

Hadronization in Elementary   
          Particle Collisions
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There are no quarks and 
gluons in this model! Only 

known hadrons!!!

SBM is still important since it is able 
to explain how “the particles are born in equilibrium”
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Relativistic Mayer Function
Canonical partition function of N classical (Boltzmann) particles is

ZN(V,T) =
1

N!

∫ N
∏

i=1

[

g d3rid3ki

(2π)3
exp

(

−
Ei

T

)

]

exp
(

−
U

T

)

with Ei = (m2 + k2
i )1/2

Interaction is given by the sum over of momentum dependent pair potentials:

U =
∑

1≤i<j≤N

uij with uij ≡ u(ri,ki; rj,kj)

Introducing the Mayer functions

fij =
[

exp
(

−
uij

T

)

− 1
]

,

one can rewrite the CP functions as:

ZN(V,T) =
1

N!

∫

dx1...dxN exp
(

−
E1 + ... + EN

T

)

∏

1≤i<j≤N

(1 + fij)

with the useful notations dxi ≡ g d3ri d3ki/(2π)3.

Using the standard Mayer machinery one can get the cluster integrals

b1 =
1

V

∫

dx1 exp
(

−
E1

T

)

=
g T3

2π2
K2

(

m

T

)

≡ ρt(T) ,

b2 =
1

2!V

∫

dx1dx2 exp
(

−
E1 + E2

T

)

f12 ,

b3 =
1

3!V

∫

dx1dx2dx3 exp
(

−
E1 + E2 + E3

T

)

(f12f13

+ f12f23 + f13f23 + f12f23f13) ,

...

and present the CP function in the familiar form

ZN(V,T) =
′

∑

{ml}

N
∏

l=1

(Vbl)ml

ml!
, where sets {ml ≥ 0} satisfy

N
∑

l=1

l ml = N

The last condition can be avoided in the Grand CP function:

Z(V,T, µ) ≡
∞
∑

N=0

exp
(

µN

T

)

ZN(V,T) = exp

(

V
∞
∑

k=1

bkz
k

)

,

where z ≡ exp(µ/T) is fugacity
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Relativistic Cluster Expansion
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Conserves 
mean number 
of particles
(charges) 

N = fixed

g is degeneracy factor

Statistical Partitions
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Statistical Bootstrap Model

The first evidence for ρ(E) = C eαE density of states was found
numerically in 1958 having 15 particles only!

G. Fast, R. Hagedorn and L. W. Jones, Nuovo Cimento 27 (1963) 856;

G. Fast and R. Hagedorn, Nuovo Cimento 27 (1963) 208

Theory (prediction): E2 dσel

dω
|90≈ A E e−3.17E (1)

... And only in 1964 it was the first experimental evidence in
favor of that. J. Orear, Phys. Lett. 13 (1964) 190

For large angle p + p → π + d at 2.4 GeV ≤ E ≤ 6.8 GeV

Consequence: For entropy S = α En ⇒ T = 1/(n α En−1)

Then T = Const leads to n = 1 ⇒ ρ(E) = C eS = C eαE

i.e. exponentially growing spectrum!
R. Hagedorn, Suppl. Nuovo Cimento 3 (1965) 147

Consider Boltzmann n-particle Grand Canonical Partition (GCP)

σn(E, V, m) =
1

n!

[

V

(2π)3

]n ∫

δ

(

E −
n

∑

i=1

Ei

)

n
∏

i=1

(4πp2
i dpi) (2)

Its Laplace transform is the n-particle partition

Zn(T, V, m) =
1

n!

[

V

(2π)3

]n
[

4π

∫

e−
√

p2+m2

T p2 dp

]n

(3)

Ideal gas 
U = 0Micro

Canonical partition

Statistical Bootstrap Partition

Statistical Bootstrap Model

Summing up over all n = 0, 1, 2,..., one finds

Z(T, V, m) =
∞

∑

n=0

Zn(T, V, m) =
∞

∑

n=0

Z1(T, V, m)n

n!
=

exp

[

V T

2π2
m2K2

(m

T

)

]

≈ exp

[

(

mT

2π

)3/2

V exp
(

−
m

T

)

]

∣

∣

∣

m>>T
(4)

For a mixture of two gases with particles of masses m1 and m2

Z(T, V, m1, m2) = Z(T, V, m1) · Z(T, V, m2)

⇒ for spectrum ρ(m) one obtains

Zρ(T, V ) = exp

[

V T

2π2

∫ ∞

0

m2K2

(m

T

)

ρ(m) dm

]

(5)

Where to get the spectrum ρ(m) from?

S. Frautschi suggested the Bootstrap Equation of the form
S. Frautschi, Phys. Rev. D3 (1971) 2821

ρ(m) = δ(m−m0)+
∞

∑

n=2

1

n!

∫

δ

(

m −
n

∑

i=1

mi

)

n
∏

i=1

(ρ(mi) dmi) (6)

⇒The fireball on mass m is either “input particle” with mass m0,

or it is composed of any number of fireballs of any masses such
that

∑

mi = m
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Statistical Bootstrap Equation

Statistical Bootstrap Model
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Solution of Statistical Bootstrap Equation

physical z ≥ 0

Solution of the SBE

Solution of SBE follows by the Laplace transform e−m/T .
J. Yellin, Nucl. Phys. B52 (1973) 583

With notations z = exp
[

−m
T

]

; G(z) =
∫

m0
exp

[

−m
T

]

ρ(m)dm

The SBE becomes z = 2G − exp [G] + 1

For G → 0 ⇒ z ≈ G, but for G → ∞ ⇒ z ≈ −∞

One can readily check that z(G) has a maximum!

dz

dG
= 0 ⇒ zmax = z0 = ln4 − 1 ≈ 0.3863...; G(z0) = ln2

• Solution: ρ(m) ≈ m−3 exp
[

m
TH

]

for m → ∞

• But this means that there exists a limiting temperature!?

T ≤ TH = −
m0

ln z0
≈

m0

0.95
≈

mπ

0.95
≈ 145 MeV

• Cabibbo and Parisi, Phys. Lett. B59 (1975) 67, suggested that

the limiting temperature TH means a phase transition to quarks

and gluons.

o
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Limiting T at fixed volume

Solution of the SBE

Solution of SBE follows by the Laplace transform e−m/T .
J. Yellin, Nucl. Phys. B52 (1973) 583

With notations z = exp
[

−m
T

]

; G(z) =
∫

m0
exp

[

−m
T

]

ρ(m)dm

The SBE becomes z = 2G − exp [G] + 1

For G → 0 ⇒ z ≈ G, but for G → ∞ ⇒ z ≈ −∞

One can readily check that z(G) has a maximum!

dz

dG
= 0 ⇒ zmax = z0 = ln4 − 1 ≈ 0.3863...; G(z0) = ln2

• Solution: ρ(m) ≈ m−3 exp
[

m
TH

]

for m → ∞

• But this means that there exists a limiting temperature!?

T ≤ TH = −
m0

ln z0
≈

m0

0.95
≈

mπ

0.95
≈ 145 MeV

• Cabibbo and Parisi, Phys. Lett. B59 (1975) 67, suggested that

the limiting temperature TH means a phase transition to quarks

and gluons.

Statistical Bootstrap Model

Vdes one finds

Grand canonical: fix volume Vdes and T close to TH

E

Vdes
≈

∫ ∞

m0

dm m

(

mT

2π

)3/2

exp

[

m

TH
−

m

T

]

m−3

Here states with m > E contribute!

Microcanonical: fix energy to smallest mass m0 and adjust
volume to get same E

Vdes

Will you get the same T value as in GCE?

It seems that same T value as in GCE cannot be reached
because we have a single state of mass m0!

It is not a proof of non-equivalence, but indication that
Microcanonical Ensemble must be used!
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And PT is of 2-nd order!?

Can we really prove this from SBE?
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         Microcanonical Ensemble
Example #1:  1-d Harmonic Oscillator

• For 1-d Harmonic Oscillator with energy & in contact with 
Hagedorn resonance (just exponential spectrum  for simplicity). 
Total energy is E.  K.A.B.et al, Europhys. Lett. 76 (2006) 402  

• The microcanonical probability of state & is:
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Where to get the spectrum ρ(m) from?

S. Frautschi suggested the Bootstrap Equation of the form
S. Frautschi, Phys. Rev. D3 (1971) 2821
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⇒The fireball on mass m is either “input particle” with mass m0,

or it is composed of any number of fireballs of any masses such
that

∑

mi = m

Exponent is 
Grand canonical!

With fixed T!
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Example #2:  An  Ideal  Vapor 
coupled to Hagedorn resonance

• Consider microcanonical partition of N particles of mass 
m and kin. energy ε. The total level density is 
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• TH is the sole temperature characterizing the system:

• A Hagedorn-like system is a perfect thermostat!
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The most probable energy partition is

• TH is the sole temperature characterizing the system:

• A Hagedorn-like system is a perfect thermostat!

Exponent is 
Grand canonical!

With fixed T!

Homework No1:
derive this result!
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Example #3: An Ideal Particle Reservoir 

• If, in addition, particles are 
generated by the Hagedorn 
resonance, their concentration is 
volume independent!

ρΗ(E)

ideal vapor ρiv
• particle mass = m
• volume = V
• particle number = N
• energy = ε
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Remarkable result because it mean saturation 
between gas of particles and Hagedorn thermostat!

         L.G. Moretto, K.A.B. et al, nucl-th/0601010 

Homework No2: derive this result!
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Important Finding!

• Volume independent concentration of vapor means:

• for increasing volume of system gas particles will be evaporated 
from Hagedorn resonance (till it vanishes);

• by decreasing volume we will absorb gas particles to Hagedorn 
resonance!   Compare to ordinary water and its vapor!

• Literally, it is a liquid (Hagedorn resonance) in equilibrium with its 
vapor at Const. temperature! 

• => This is mixed phase of the first order PT! 

ρH(E)
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Why In Previous Works There Was
         an Upper Temperature?  

• Because they used canonical and grand canonical 
ensembles which are NOT equivalent  to MCE in this 
case!

• Since the Hagedorn resonance is a perfect thermostat, 
the transform to (grand)canonical ensemble with other 
T does not make ANY SENSE!

Isochoric Ensemble Singularities

For ANY system the inverse Laplace transform yields (χ > max(Re{λ̃n}))

p(T) = T

∞
∫

0

d m
ρ(m)

N

∫

d3k

(2π)3
e−

√
m2+k2

T = T

∞
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d m

m3N

∫

d3k

(2π)3
e

m
TH

−
√

m2+k2

T

TH ≈ 170 MeV

Remarkably, T = Const while
√

s grows by 12 times!

• To get an idea about the typical range of parameters, let us
find the contribution of deformations of one-constituent base

ZCan ≡
∫

d E ρ0 e
E
TH

− E
T = ρ0

TH T

TH − T

it exists for T < TH, but we know that two thermostats of
different temperatures CANNOT BE IN EQUILIBRIUM!

⇒ R0 ≈ 0.852606; I0 = 0; R1 ≈ −0.72; I1 ≈ ±4.5; ...

ωLat = q J
Tc d

REMARKABLE
1
2
(ωSquare + ωTriangular) ≈ 0.85267

⇒ R0 → 2
[

eR0 − 1
]−1

, ⇒ R0 = s1λ̃0 ≈ 1.06009 .

• For In (= 0 ⇒ R0 > Rn>0, since inequality cos(Ink) ≤ 1 cannot

be equality for all k simultaneously!
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Example with Explicit Thermostat:
• Export/import of heat does not change T!
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Z T( ) = dEρ E( )e−E T∫ =
T0T
T0 −T

eS0

First take heat dQ=E from 
system with temperature T: 

Then give it to thermostat

Is T   just a parameter? o

According to this logic, thermostat can have ANY T <T  !o
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Conclusions for Hagedorn thermostat

• Exponential mass spectrum is a very special object. 

• It imparts the Hagedorn temperature to particles in contact with 
it = perfect thermostat!

• It is also a perfect particle reservoir!

• Grand canonical treatment should be used with great care! 
Microcanonical one is the right one.

• This is 1-st order phase transition in a finite system. No liberation 
of color d.o.f. is necessary for that!

• These simple findings took about 40 years (!) since before 2005 
no one studied a PT in microcanonical ensemble at finite volumes

This is why “the particles are born in equilibrium”
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• The inverse slope that Hagedorn resonances are imparting is               
a kinetic temperature. K.A.B. et al, hep-ph/0504011

• The presence of the mass cut-off of the Hagedorn spectrum DOES 
NOT ALTER our conclusions: Hagedorn resonances are PERFECT  
THERMOSTATS and PARTICLE RESERVOIRS!

• Power prefactor in the Hagedorn spectrum changes the imparting 
temperature on 10-15%, and, perhaps, can lead to some experimental 
signals. 

The Refined Analysis Shows: 
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Why is it important?
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• Stat. Hadronization 
Model: T = 175+/-15 MeV 
F.Becattini,A.Ferroni, Acta. Phys. 
Polon. B 35 (2004)         

Hadronization in Elementary   
          Particle Collisions
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These results justify the Statistical Hadronization Model and explain 
why hadronization T and inverse slopes in el. particle collisions 

are about 170 MeV. 
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Stat.Bootstrap Model,
S.Frautschi, 1971

Veneziano Model,
K.Huang,S.Weinberg, 

1970
Hadrons are built from hadrons Used in string models

NB: Hagedorn Spectrum Follows from

M.I.T. Bag Model,
J.Kapusta, 1981

Hadrons are quark-gluon bags

Large Nc limit of 3+1 
QCD

T. Cohen, 2009

The real problem with H-spectrum is that experimentally it 
is not seen where it supposed to be seen!
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To make SBE more realistic

• we have to understand why at low baryonic densities the 1-st order 
PT degenerates into a cross-over.

• we have to study the mechanism of the (tri)critical endpoint 
generation and the role of surface tension in it.    

• we have to account for finite size of hadrons which might be not 
small.    

• we have to account for finite life time of hadrons. 
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Thanks for your attention!
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