Dense QCD Phases in Heavy Ion Collisions JINR, Dubna, August 21 – September 4, 2010

Phase Transitions & Instabilities

Jørgen Randrup (LBNL)

Lecture #1: Phase coexistence

Lecture #2: Phase separation

Phase Transitions & Instabilities

Static

Dynamic

Phase coexistence

Illustrative examples

Finite range effects

Phase crossing

Mean field instabilities

Instabilities in fluid dynamics

Instabilities in chiral dynamics

Transport model: Dissipative fluid dynamics

Energymomentum tensor:

$$T^{00} \approx \varepsilon \quad \& \quad T^{0i} \approx (\varepsilon + p)v^i + q^i \quad \& \quad \text{A Muronga, PRC 76, 014909 (2007)}$$

$$T^{ij} \approx \delta_{ij}p - \eta[\partial_i v^j + \partial_j v^i - \frac{2}{3}\delta_{ij}\partial^k v^k] - \zeta\delta_{ij}\partial^k v^k \quad |\rho_k| \ll \rho_0 \ \Rightarrow \ |v| \ll 1$$

$$T^{ij} \approx \delta_{ij}p - \eta[\partial_i v^j + \partial_j v^i - \frac{2}{3}\delta_{ij}\partial^k v^k] - \zeta\delta_{ij}\partial^k v^k$$

 $|\rho_k| \ll \rho_0 \ \Rightarrow \ |v| \ll 1$

Eckart frame

$$\nabla \cdot T \approx \nabla p - \eta \Delta v - \left[\frac{1}{3}\eta + \zeta\right] \nabla (\nabla \cdot v) \approx \partial_x p - \left[\frac{4}{3}\eta + \zeta\right] \partial_x^2 v$$

Equations of motion:
$$\begin{cases} &C: \ \partial_t \rho \ \doteq -\rho_0 \boldsymbol{\nabla} \cdot \boldsymbol{v} \ \Rightarrow \ \omega \rho_k \doteq \rho_0 k v_k \\ &\boldsymbol{M}: \ h_0 \partial_t \boldsymbol{v} \ \doteq -\boldsymbol{\nabla} [p - \zeta \boldsymbol{\nabla} \cdot \boldsymbol{v}] - \boldsymbol{\nabla} \cdot \boldsymbol{\pi} - \partial_t \boldsymbol{q} \\ &E: \ \partial_t \varepsilon \ \doteq -h_0 \boldsymbol{\nabla} \cdot \boldsymbol{v} - \boldsymbol{\nabla} \cdot \boldsymbol{q} \end{cases}$$

charge

$$\boldsymbol{M}: h_0 \partial_t \boldsymbol{v} \doteq -\boldsymbol{\nabla}[p - \zeta \boldsymbol{\nabla} \cdot \boldsymbol{v}] - \boldsymbol{\nabla} \cdot \boldsymbol{\pi} - \partial_t \boldsymbol{q}$$

momentum

$$E: \partial_t \varepsilon \doteq -h_0 \nabla \cdot \boldsymbol{v} - \nabla \cdot \boldsymbol{q}$$

energy

Sound equation:

$$\partial_t E - \nabla \cdot \mathbf{M} : h_0 \partial_t^2 \varepsilon \doteq \Delta [p - \zeta \nabla \cdot \mathbf{v}] + \nabla \cdot (\nabla \cdot \mathbf{\pi})$$

$$\omega^2 \varepsilon_k \doteq k^2 p_k - i [\frac{4}{3} \eta + \zeta] \frac{\omega}{\rho_0} k^2 \rho_k$$

$$\xi \equiv \frac{4}{3} \eta + \zeta$$

$$\xi \equiv \frac{4}{3}\eta + \zeta$$

Heat flow:

$$\mathbf{q} \approx -\kappa [\mathbf{\nabla} T + T_0 \partial_t \mathbf{v}] : \quad q_k = -i\kappa [kT_k - \frac{T_0}{\rho_0} \frac{\omega^2}{k} \rho_k] \qquad \quad T_k \approx \frac{1}{1 + i\kappa k^2 / \omega c_v} \frac{T_0}{\rho_0} \left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} \rho_k$$

$$T_k pprox rac{1}{1 + i\kappa k^2/\omega c_v} rac{T_0}{
ho_0} \left(rac{\partial p}{\partial arepsilon}
ight)_{
ho}
ho_k$$

Equation of state:

$$p_T(\rho) \Rightarrow p_k = \left(\frac{\partial p}{\partial \varepsilon}\right)_{\rho} c_v T_k + \frac{h_0}{p_0} v_T^2 \rho_k$$

Dispersion equation:

$$\omega^2 \doteq v_T^2 k^2 + C \frac{\rho_0^2}{h_0} k^4 - i\xi \frac{\omega}{h_0} k^2 + \frac{v_s^2 - v_T^2}{1 + i\kappa k^2 / \omega c_v} k^2$$

Heiselberg, Pethick, Ravenhall, Ann. Phys. 233, 37 (1993)

Ideal fluid dynamics

Energy-momentum tensor: $T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu}$ $u^{\mu} = (\gamma, \gamma \mathbf{v})$

$$0 = \partial_{\mu} T^{\mu\nu} \, \left\{ \begin{array}{ll} \nu = 0: & 0 = \partial_{\mu} T^{\mu 0} = \partial_{t} (\varepsilon + p v^{2}) \gamma^{2} + \partial_{i} (\varepsilon + p) \gamma^{2} v^{i} & \text{E} \\ \nu = i: & 0 = \partial_{\mu} T^{\mu i} = \partial_{t} (\varepsilon + p) \gamma^{2} v^{i} + \partial_{j} (\varepsilon + p) \gamma^{2} v^{j} v^{i} + \partial^{i} p & \text{M} \end{array} \right.$$

Non-relativistic flow (
$$v << 1$$
):
$$\begin{cases} \nu = 0: & \partial_t \varepsilon = -\partial_i (\varepsilon + p) v^i \\ \nu = i: & \partial_t (\varepsilon + p) v^i = -\partial^i p \end{cases}$$

$$\nu = i: \ \partial_t(\varepsilon + p)v^i = -\partial^i p$$

$$\partial_t E - \partial_i M$$
:

$$\partial_t^2 \varepsilon(x) = \partial_i \partial^i p(x)$$

Sound equation

Equation of state: $p_0(\varepsilon)$

$$p(x) = p_0(\varepsilon(x)) \Rightarrow \partial_i \partial^i p(x) = \frac{\partial p_0(\varepsilon)}{\partial \varepsilon} \partial_i \partial^i \varepsilon(x)$$

$$\partial_t^2 \varepsilon = v_s^2 \, \nabla^2 \varepsilon$$

$$v_s^2 \equiv \partial_{\varepsilon} p_0$$

 $v_s^2 \equiv \partial_{arepsilon} p_0$ (sound speed) 2

Evolution of small disturbances

=> v << 1

Small disturbance in a uniform stationary fluid

$$\varepsilon(x,t) = \varepsilon_0 + \delta \varepsilon(x,t), \ \delta \varepsilon \ll \varepsilon_0$$

First order in $\delta \varepsilon$:

$$\begin{cases}
\partial_t \delta \varepsilon(x,t) \approx (\varepsilon_0 + p_0) \partial_x v_x(x,t) \\
(\varepsilon_0 + p_0) \partial_t v_x(x,t) \approx \partial_x p(x,t) \approx \frac{\partial p_0}{\partial \varepsilon_0} \partial_x \delta \varepsilon(x,t)
\end{cases}$$

Sound equation:

$$\partial_t^2 \delta \varepsilon(x,t) = \frac{\partial p_0}{\partial \varepsilon_0} \, \partial_x^2 \delta \varepsilon(x,t) \qquad v_s^2 = \frac{\partial p}{\partial \epsilon}$$

$$v_s^2 = \frac{\partial p}{\partial \epsilon}$$

Harmonic disturbance:
$$\delta \varepsilon_k(x,t) \sim \mathrm{e}^{ikx-i\omega_k t}$$

Dispersion relation:

$$\omega_k^2 = v_s^2 k^2$$

$$\begin{cases} v_s^2 > 0 : & \omega_k = \pm v_s k \\ v_s^2 < 0 : & \omega_k = \pm i \gamma_k = \pm i |v_s| k \end{cases}$$

Diverges for large k!

Ideal fluid dynamics with one conserved charge

$$\eta, \, \xi, \, \kappa = 0$$

$$\varepsilon(x) = \varepsilon_0 + \delta \varepsilon(x)$$

$$\rho(x) = \rho_0 + \delta \rho(x)$$

$$|v(x)| \ll 1$$

$$T^{\mu\nu}(\mathbf{x})$$
: $T^{00} \approx \varepsilon$

$$T^{00} \approx \varepsilon$$
 $T^{i0} = T^{0i} \approx (\varepsilon + p)v^i$ $T^{ij} = T^{ji} \approx \delta_{ij}p$

$$T^{ij} = T^{ji} \approx \delta_{ij} p$$

$$0 \doteq \partial_{\mu} T^{\mu 0} = \partial_{t} T^{00} + \partial_{i} T^{i0} = \partial_{t} \varepsilon + (\varepsilon + p) \partial_{i} v^{i} \quad \Rightarrow \quad \omega \varepsilon_{k} \doteq (\varepsilon_{0} + p_{0}) k v_{k}$$

$$0 \doteq \partial_{\mu} T^{\mu i} = \partial_{t} T^{0i} + \partial_{j} T^{ji} = (\varepsilon + p) \partial_{t} v^{i} + \partial_{j} T^{ji}$$

$$\partial_t \rho \doteq -\rho \partial_i v^i \Rightarrow \omega \rho_k \doteq \rho_0 k v_k$$

Continuity equation

E&C =>
$$(\varepsilon_0 + p_0)\rho_k = \rho_0 \varepsilon_k$$

 ρ tracks ε when κ =0

$$\partial_t E - \partial_i M \; \Rightarrow \; \partial_t^2 arepsilon = \partial_i \partial_j T^{ji} = \partial_i \partial^i p \; \; => \; \omega^2 arepsilon_k = k^2 p_k \; \;$$
 Sound equation

$$\Rightarrow \omega^2 \varepsilon_k = k^2 p_k$$

$$p(\varepsilon,\rho) \Rightarrow p_k = \frac{\partial p}{\partial \varepsilon} \varepsilon_k + \frac{\partial p}{\partial \rho} \rho_k = \left[\frac{\partial p}{\partial \varepsilon} + \frac{\rho_0}{\varepsilon_0 + p_0} \frac{\partial p}{\partial \rho}\right] \varepsilon_k = v_s^2 \varepsilon_k \qquad v_s^2 \equiv \frac{\rho}{\varepsilon + p} \left(\frac{\partial p}{\partial \rho}\right)_s$$

Diverges for large k!

Inclusion of gradient correction

$$p(\mathbf{r}) \approx p_0(\varepsilon(\mathbf{r}), \rho(\mathbf{r})) - C\rho_0 \nabla^2 \rho(\mathbf{r})$$
$$\rho(\mathbf{r}, t) = \rho_0 + \delta \rho(\mathbf{x}, t) \doteq \rho_0 + \rho_k e^{ikx - i\omega t}$$

$$\Rightarrow p_k \rightarrow p_k + C\rho_0 k^2 \rho_k$$

$$\omega_k^2 = v_s^2 k^2 + C \frac{\rho_0^2}{\varepsilon_0 + p_0} k^4$$

$$\gamma_k^2 = |v_s^2| k^2 - C \frac{\rho_0^2}{\varepsilon_0 + p_0} k^4$$

$$\Rightarrow \gamma_k^2 = |v_s^2|k^2 - C\frac{\rho_0^2}{\varepsilon_0 + p_0}k^4$$

Viscous fluid dynamics with one conserved charge

$$x = 0$$

$$\varepsilon(x) = \varepsilon_0 + \delta \varepsilon(x)$$

$$\rho(x) = \rho_0 + \delta \rho(x)$$

$$|v(x)| \ll 1$$

$$T^{\mu\nu}(\mathbf{x}): \quad \begin{cases} T^{00} \approx \varepsilon & T^{i0} = T^{0i} \approx (\varepsilon + p)v^{i} \\ T^{ij} = T^{ji} \approx \delta_{ij}p - \eta[\partial_{i}v^{j} + \partial_{j}v^{i} - \frac{2}{3}\delta_{ij}\nabla \cdot \boldsymbol{v}] - \zeta\delta_{ij}\nabla \cdot \boldsymbol{v} \end{cases}$$
$$\Rightarrow \quad \nabla \cdot \boldsymbol{T} \approx \nabla p - \eta \Delta v - \left[\frac{1}{3}\eta + \zeta\right]\nabla(\nabla \cdot \boldsymbol{v})$$

$$0 \doteq \partial_{\mu} T^{\mu 0} = \partial_{t} T^{00} + \partial_{i} T^{i0} = \partial_{t} \varepsilon + (\varepsilon + p) \partial_{i} v^{i} \quad \Rightarrow \quad \omega \varepsilon_{k} \doteq (\varepsilon_{0} + p_{0}) k v_{k}$$

$$\mathbf{M} \qquad 0 \doteq \partial_{\mu} T^{\mu i} = \partial_{t} T^{0i} + \partial_{j} T^{ji} = (\varepsilon + p) \partial_{t} v^{i} + \partial_{j} T^{ji}$$

$$\partial_t \rho \doteq -\rho \partial_i v^i \quad \Rightarrow \quad \omega \rho_k \doteq \rho_0 k v_k$$

E&C =>
$$(\varepsilon_0 + p_0)\rho_k = \rho_0 \varepsilon_k$$

$$\partial_t E - \partial_i M \Rightarrow \partial_t^2 \varepsilon = \partial_i \partial_j T^{ji} = \partial_i \partial^i [p - (\frac{4}{3}\eta + \zeta)\partial_j v^j]$$

$$\gamma_k^2 = |v_s^2| k^2 - C \frac{\rho_0^2}{\varepsilon_0 + \rho_0} k^4 - \xi \frac{k^2}{\varepsilon_0 + p_0} \gamma_k$$

Continuity equation ρ tracks ε when κ =0

Sound equation

$$\xi \equiv \frac{4}{3}\eta + \zeta$$

Dispersion relation

Viscous fluid dynamics with one conserved charge

$$\gamma_k^2 = |v_s^2| k^2 - C \frac{\rho_0^2}{\varepsilon_0 + \rho_0} k^4 - \xi \frac{k^2}{\varepsilon_0 + p_0} \gamma_k$$

$$\xi \equiv \frac{4}{3}\eta + \zeta$$

$$\gamma_k \approx \left[|v_s^2| k^2 - C \frac{\rho_0^2}{\varepsilon_0 + \rho_0} k^4 \right]^{\frac{1}{2}} - \frac{1}{2} \xi \frac{k^2}{\varepsilon_0 + p_0}$$

Scaling expansions on the board!

Phase Transitions & Instabilities

Static

Jynamic

Phase coexistence

Illustrative examples

Finite range effects

Phase crossing

Mean field instabilities

Instabilities in fluid dynamics

Instabilities in chiral dynamics

Linear sigma model: Semi-classical treatment

Chiral O(4) field:
$$\phi(x) = (\sigma(x), \pi(x))$$

$$\phi(x)^2 = \phi(x) \cdot \phi(x) = \phi_{\mu}(x)\phi^{\mu}(x) = \sigma(x)^2 + \pi(x) \cdot \pi(x)$$

Lagrangian:
$$\mathcal{L}(x) = \frac{1}{2} \partial_{\mu} \phi(x) \cdot \partial^{\mu} \phi(x) - \frac{\lambda}{4} [\phi(x)^2 - v^2]^2 + H\sigma(x)$$

Hamiltonian:
$$\mathcal{H}(x) = \frac{1}{2}\psi(x)^2 + \frac{1}{2}\phi(x)^2 + \frac{\lambda}{4}[\phi(x)^2 - v^2]^2 - H\sigma(x) \qquad \qquad \psi = \partial_t \phi$$

Equation of motion:
$$\partial_{\mu}\partial^{\mu}\phi(x) + \lambda(\phi^2 - v^2)\phi = H\hat{\sigma}$$

Separation into order parameter and quasi-particles

Periodic box

$$\phi(\mathbf{r},t) = \underline{\phi}(t) + \delta\phi(\mathbf{r},t)$$

$$\phi(x) = (\sigma(x), \pi(x))$$

 $\rightarrow \phi(t) = (\phi_0(t), \mathbf{0})$

$$\underline{\boldsymbol{\phi}}(t) = \langle \boldsymbol{\phi}(\boldsymbol{r}, t) \rangle = \int \frac{d^3 \boldsymbol{r}}{\Omega} \boldsymbol{\phi}(\boldsymbol{r}, t)$$

Quasi particles:

$$\delta oldsymbol{\phi} = (\delta \phi_\parallel, \delta oldsymbol{\phi}_\perp)$$

$$\prec \delta \phi^2 \succ \ = \ \prec \delta \phi_{\parallel}^2 \succ + 3 \prec \delta \phi_{\perp}^2 \succ$$

Equations of motion:

Order parameter:

$$\partial_t^2 \underline{\phi} + \lambda [\phi_0^2 + \langle \delta \phi^2 \rangle + 2 \langle \delta \phi_{\parallel}^2 \rangle - v^2] \phi = H \hat{\sigma}$$

Quasi particles:

$$\begin{cases}
 [\partial_{\mu}\partial^{\mu} + \mu_{\parallel}^{2}]\delta\phi_{\parallel} = 0 \\
 [\partial_{\mu}\partial^{\mu} + \mu_{\perp}^{2}]\delta\phi = 0
\end{cases}$$

Quasi-particle modes

$$\begin{cases}
 [\partial_{\mu}\partial^{\mu} + \mu_{\parallel}^{2}]\delta\phi_{\parallel} = 0 \\
 [\partial_{\mu}\partial^{\mu} + \mu_{\perp}^{2}]\delta\phi = 0
\end{cases}$$

$$\underline{\boldsymbol{\phi}} = (\phi_0, \mathbf{0})$$

$$\delta oldsymbol{\phi} = (\delta \phi_{\parallel}, \delta oldsymbol{\phi}_{\perp})$$

Effective masses are determined by the gap equations:

$$\mu_{\parallel}^2 = \lambda [3\phi_0^2 + \langle \delta\phi^2 \rangle + 2 \langle \delta\phi_{\parallel}^2 \rangle - v^2]$$

$$\mu_{\perp}^2 = \lambda [\phi_0^2 + \langle \delta\phi^2 \rangle + 2 \langle \delta\phi_{\perp}^2 \rangle - v^2]$$

Thermal fluctuations:

$$\prec \delta \phi_i^2 \succ = \frac{1}{\Omega} \sum_{\boldsymbol{k}}' \frac{1}{\epsilon_k^{(i)}} \frac{1}{\mathrm{e}^{\epsilon_k^{(i)}/T} - 1}$$

Effective potential for the order parameter

Separation of the total energy:

$$\mathcal{E}(t) = \int d^3 \boldsymbol{r} \, \mathcal{H}(\boldsymbol{r}, t) = \Omega \langle \frac{1}{2} \psi^2 + \frac{1}{2} (\nabla \boldsymbol{\phi})^2 + V \rangle = \Omega (E_0 + E_{\mathrm{qp}} + \delta V)$$

Bare energy:

$$E_0 = \frac{1}{2}\psi_0^2 + \frac{\lambda}{4}(\phi_0^2 - v^2)^2 - H\phi_0\cos\chi_0 = K_0 + V_0$$

 $oldsymbol{\psi} = \partial_t oldsymbol{\phi}$

Quasi particles:

$$E_{\rm qp} = \sum_{j=0}^{3} \frac{1}{2} \langle (\partial_t \delta \phi_j)^2 + (\nabla \phi_j)^2 + \mu_j \delta \phi_j^2 \rangle = \sum_{j=0}^{3} \frac{1}{2} \sum_{\mathbf{k}}' (|\psi_{\mathbf{k}}^{(j)}|^2 + (k^2 + \mu_j^2) |\phi_{\mathbf{k}}^{(j)}|^2)$$

Correction:

$$\delta V = \frac{\lambda}{4} \langle \delta \phi^4 \rangle - \frac{\lambda}{2} \langle \delta \phi^4 \rangle_G \approx -\frac{\lambda}{4} \langle \delta \phi^4 \rangle_G$$

$$V_T(\phi_0, \chi_0) = V_0 + \langle E_{qp} \rangle + \langle \delta V \rangle$$

$$\delta V = \frac{\lambda}{4} \langle \delta \phi^4 \rangle - \frac{\lambda}{2} \langle \delta \phi^4 \rangle_G \approx -\frac{\lambda}{4} \langle \delta \phi^4 \rangle_G$$

 $= \langle \delta \phi^2 \rangle^2 + 2 \operatorname{Tr}(\langle \delta \phi \delta \phi \rangle \circ \langle \delta \phi \delta \phi \rangle)$
 $\approx -\frac{3}{4} \lambda \left[\langle \delta \phi_{\parallel}^2 \rangle^2 + 2 \langle \delta \phi_{\parallel}^2 \rangle \langle \delta \phi_{\perp}^2 \rangle + 5 \langle \delta \phi_{\perp}^2 \rangle^2 \right] \equiv \delta V_T$

$$E_{qp} = \frac{1}{2} \langle \delta \psi \circ \delta \psi + \nabla \delta \phi \circ \nabla \delta \phi + \delta \phi \circ M \circ \delta \phi \rangle$$

Free energy of the order parameter

$$\mathcal{E}(t) = \int d^3 \boldsymbol{r} \, \mathcal{H}(\boldsymbol{r}, t) = \Omega \langle \frac{1}{2} \psi^2 + \frac{1}{2} (\nabla \phi)^2 + V \rangle = \Omega (E_0 + E_{\mathrm{qp}} + \delta V) \qquad \qquad \psi = \partial_t \phi$$

$$F_T = V_T(\phi_0, \chi_0) - TS_T(\phi_0)$$

$$F_{T} = V_{T}(\phi_{0}, \chi_{0}) - TS_{T}(\phi_{0})$$

$$+ \frac{T}{\Omega} \sum_{\mathbf{k}}^{\prime} [\ln(1 - e^{-\epsilon_{\mathbf{k}}^{1}/T}) + 3\ln(1 - e^{-\epsilon_{\mathbf{k}}^{1}/T})]$$

$$- \frac{3}{4} \lambda \left[\langle \delta \phi_{\parallel}^{2} \rangle^{2} + 2 \langle \delta \phi_{\parallel}^{2} \rangle \langle \delta \phi_{\perp}^{2} \rangle + 5 \langle \delta \phi_{\perp}^{2} \rangle^{2} \right]$$

Chiral phase diagram

Phase structure for different pion masses

First-order transition emerges below about half the physical mass

The phase structure washes out when the volume is reduced

Thermal distribution of the order parameter

$$\mathcal{Z}_T = \int \mathcal{D}[\phi(r), \psi(r)] e^{-\frac{\Omega}{T}E[\phi(r), \psi(r)]} = > \mathcal{Z}_T = \int d^4\underline{\psi} e^{-\frac{\Omega}{T}K_0} \int d^4\underline{\phi} e^{-\frac{\Omega}{T}(V_0 + \delta V_T)} \int \mathcal{D}[\delta\phi(r), \delta\psi(r)] e^{-\frac{\Omega}{T}E_{qp}}$$

$$\mathcal{Z}_T = \int d^4 \underline{\phi} \ e^{-\Omega F_T(\phi_0, \chi_0)/T}$$

Is the equilibrium consistent with the dynamics?

Initialize a sample of fields from the calculated thermal distribution Then follow their dynamical evolution to check for consistency

The calculated equilibrium distribution is indeed reproduced by the dynamics

Chiral dynamics

Prepare sample of initial fields

Follow dynamical evolutions

Pseudo Bjorken expansions in D dimensions

