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source: site of Mesoscopic Physics Group (Manchester University)

AFM images of: a graphene molecule (left). The window size is
10x10 micron (the graphene film is only one atom thick but approx.
100,000 atoms long in the two lateral directions;

single-atom-thin carbon nanofabric (right) (3x3 micron in size).
Graphene looks just like a silk tissue thrown on a surface: it is
creased with many folds, pleats and wrinkles.



Nobel Prize in Physics (2010)

A. Geim and
K. Novoselov
for groundbreaking experiments

regarding the two-dimensional
material graphene
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How to create a 2D crystal?

Crystalline Order in Two Dimensions* Mermin: “... the bound can be so
weak to allow two-dimensional
N. D. MerminT . .
Lebovatory of Atomic and Solid State Physics, Covnell University, Ithaca, New York Systems Of |ESS th an astronomic size
(Received 1 July 1968) . . "
to display crystalline order

This result excludes conventional crystalline long-range order in two dimensions

Possible explanations on how graphene evades the Mermin-Wagner theorem:

Graphene




Ribbons

Science 319, 1229 (2008): Chemical Derivation

r - 22 Nature 458, 872 (2009): SWCNT Unzipping_
B 4 . Tube Unzipping ; . v

Nature Nanotechnology 3, 397 (2008): STM Nanolithography
E .
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Pentagons and disclination
buckling transition

By its nature, the pentagon in a graphite sheet is a topological defect.
Actually, fivefold coordinated particles (pentagons) are orientational
disclination defects in the otherwise sixfold coordinated triangular lattice.



Defects, Curvature

The pentagon (positive curvature) and the
heptagon (negative curvature) in the hexagonal
graphite lattice



Experimental observation of the pentagon

by STM (scanning tunneling microscopy)
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B.An et.al, Appl.Phys.Lett. 78, 3696 (2001): the enhanced charge density localized at
each carbon atom in the pentagon was experimentally clarified. Typical images of the
conical protuberance by STM: (a) Top view of the apex, (b) Bird's-eye view, (c) Cross
section along line AA'. Five bright spots are clearly seen.




Cone geometry

Due to the symmetry of a graphite
sheet only five types of cones can
be created from a continuous
sheet of graphite. The total
disclinations of all these cones are
multiplies of 60°, corresponding to
the presence of a given number (n)
of pentagons at the apices.

carbon nanocones with
cone angles of 19°, 39° 60°, 85°,
and 113° have been observed in a
carbon sample




Fig. 2. FESEM images of a cone-covered graphite aggregate. (a) Low-magnification image showing
complete coverage of the aggregate surface with conical structures. A ~39° cone is marked by an
arrow. (b) Higher magnification image of the sample showing a variety of large cones with different
apex angles and sharp and blunt tips. Arrows show changes in the apex angle. (c¢) Close up view of
two surfaces which are almost perpendicular and show different cone morphologies — large cones on
one surface and globular (artichoke-like) structures on the other. The latter ones are clusters of large-
angle cones. Arrows show some of the cones that are ripped on the side



, : __f
Fig. 3. Typical cone morphologies. (a) SEM image of a cone with a 60° apex angle, the most common
apex angle. The slightly uneven surface of the cone suggests layer growth. (b) FESEM and (c) SEM
images of large cones with numerous smaller cones growing on their surface. Smaller cones covering
surfaces of large cones have a broad distribution of shapes, but large apex angles prevail (c). (d)
FESEM image of four cones having sharp and broad tips (multiple tips are marked by arrows). The
cones are oriented to reveal their circular cross sections around the tips and layered growth (ripples).



A presence of sharp resonant states in
the region close to the Fermi energy

J C Charller andG M ngnanese Phys. Rev.Lett. 86, 5970 (2001)
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Computed tight-binding
LDOS for a single graphene
layer (a), and nanocones
with one (b), two (c) and (d),
three (e), four (f) and (g), and
five (h) pentagons,
respectively. The Fermi level
IS at zero energy.

The strength and the position of these states with respect to the Fermi level was
found to depend sensitively on the number and the relative positions of the
pentagons constituting the conical tip. In particular, a prominent peak which appears
just above the Fermi level was found for the nanocone with three symmetrical
pentagons (which corresponds to a 60° opening angle or, equivalently, to 180°

disclination).



Nanohorns
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Carbon nanohorn structures with a total disclination
angle of 5(11/3), containing five isolated pentagons at the
terminating cap. Structures (a)—(c) contain all pentagons
at the conical “shoulder,” whereas structures (d)—(f)
contain a pentagon at the apex.



Graphite plane

J.C. Slonczewski and P.R. Weiss, Phys.Rev. 109, 272 (1958)

Real space Reciprocal space

~—ALTERNATIVE
BRILLOUIN
ZONE

SYMMETRICAL
BRILLOUIN
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Important:
there are two atoms per unit cell;
there are to generate Bloch eigenstates at the Fermi

point.



Lattice, spectrum
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Energy-band structure of the bands of a
two-dimensional graphite layer.

Two degenerate eigenstates which provide
the basis set for the kp trial wave function.




Dirac equation

Stepl: the effective-mass approximation, which is equivalent to the kp expansion
about the K point in the Brillouin zone

U(k.r) = f1(k)e™ 07 (K, r)+ fo(K )™ 05 (K, 7)

Step2: put it in the Schroedinger equation and diagonalize the secular equation for
functions f. As a result,

—i0"0,)(r) = EY(r)

The most important fact is that the electronic spectrum of a single graphite plane
linearized around the corners of the hexagonal Brillouin zone coincides with that
of the Dirac equation in (2+1) dimensions



DOS In 2D

DoS(F) = ﬂj[ ds ___ g =4-degeneracy of electronic
A J—p |gradge(k)|  states

For linear (Dirac-type) spectrum

_gVIE]

DoS(FE) 5

Linear in energy E

Local DOS for arbitrary surface

LDoS(E,x) = 3| (2)?0(e(k) — E)



Pedagogical example



PHYSICAL REVIEW A VOLUME 38, NUMBER 2

Defects in flexible membranes with crystalline order

H. S. Seung and David R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 3 March 1988)

We study isolated dislocations and disclinations in flexible membranes with internal crystalline
order, using continuum elasticity theory and zero-temperature numerical simulation. These defects
are relevant, for instance, to lipid bilayers in vesicles or in the L; phase of lyotropic smectic liquid
crystals. We first simulate defects in flat membranes, obtaining numerical results in good agreement
with plane elasticity theory. Disclinations and dislocations eventually exhibit a buckling transition
with increasing membrane radius. We generalize the continuum theory to include such buckled de-
fects, and solve the disclination equations in the inextensional limit. The critical radius at which
buckling starts to screen out internal elastic stresses is determined numerically. Computer simula-

tion of buckled defects confirms predictions of the disclination energies and gives evidence for a
finite dislocation energy.
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FIG. 5. (a) Buckled positive disclination (K,/&k=2000). (b)
Buckled negative disclination (K, /k=2000).

JULY 15, 1988
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For a defect-free membrane, the d-function terms vanish,
and we are left with the von Karman equations for large
deflections of thin plates.!” These coupled nonlinear par-
tial differential equations are ‘““very complicated, and can-
not be solved exactly, even in very simple cases.”’



For an isolated positive disclination at the origin, we
assume rotational symmetry and write Eqgs. (4.10) away
from the disclination core as

s, 1 d |dX df
va_rdr i dr (4.11a)
1 gay, 1 af | _
KOVX >y dr ir =0, (4.11b)
where
2__1__9_1_ d
v r drrdr

It 1s not difficult to guess a trial solution of these equa-
tions,
,

X=—kln|—
a

’ (4.12a)

f==x r. (4.12b)
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Although it would appear that we have found an exact
solution, comparison with the original form of the von
Karman equations (4.8) reveals that (4.12) is not a true
solution because the left-hand side of Eq. (4.8b) is propor-
tional to V28(r), while the right-hand side vanishes. If we
attempt to bypass this issue by deleting a small disk of
material around the origin, we create an inner boundary
on which o,, and o,, must vanish. One can easily calcu-
late from the expression (4.12a) for X that o, behaves
like 1/72, so the inner boundary condition is badly violat-
ed if we excise a small disk.



[IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 395502 (11pp) doi:10.1088/0953-8984/22/39/395502

Electronic properties of disclinated flexible
membrane beyond the inextensional limit:
application to graphene

E A Kochetov', V A Osipov' and R Pincak!-



Actually, a general solution must include a homogeneous term

r r

Xo = —log—+gq
ro ro

The stress tensor takes the form

I q
Opr = 5 |
r I'ro
o, (r = rg) = o0pg vyields g = 1+ O’oi’g
The stretching energy of
the membrane 5 5
K<q R
Ey log —

K Org ro



Back to the Dirac equation



The Dirac equation on a surface in the presence of the
gauge field a, and the external magnetic field with the vector
potential A, Is written as

iy®e’ [V, —ia, —iA] = EY

with  Vp = 0p + $2p



Schematic densities of states for a small patch near the
apex of a cone at zero magnetic field and K, — infinity

7p) n=0 n=- n=-2
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However, a cone with a point-like apex is a mathematical abstraction
since in a real situation the media has a finite stiffness, which would
Inevitably result in a certain smearing of a conical singularity.



Nanocones: another geometry

Upper half of a two-sheet hyperboloid

(X, ¢) — (asinh y cos ¢, asinh ysin g, ¢ cosh y)

IS suitable for the description of cone-like structures with pentagons
situated at a smoothed apex. The most appropriate model for nanohorns
with five pentagons at the tip.



However, one cannot incorporate finite elasticity into the theory by simply
replacing a cone by a smooth surface that asymptotically approaches a
cone far away from the origin. This would simply eliminate the defect.

To illustrate this, consider an upper half of a hyperboloid as an

embedding
(&, ¢) — (asinh& cosg, asinh& sing, ¢ cosh§)
The components of the induced metric can be written as

— a’ cosh® & + ¢? sinh” &, ¢,, = a>sinh? &
gég . SYY

8ot = 8tp =0,



which gives for the spin connection coefficients

12 21
;" = g = 0,

I Y a coshég}
= —w, =|1— = )
W, W, |: = w (&

Since w (&) goes to zero as & — 0 a circulation of that field
over a loop encircling the origin gives a flux which tends to
zero as the counter shrinks to zero:

lim f w,” dp =0,
Ce

e—0



To incorporate flux we suggest the following metrics

ger = a” cosh” & + ¢ sinh” £,

2 2 .2
8oy = a~a” sinh” &, 8pe = 8ep = 0,
with o =1 —v

This metric generates the spin connection term

o [1 _ao coshé} — g (£)

\/ 8&¢

e—0

limgg a);z do = 2mv.
Ce
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e Ul coth® & + nit = ED,

(j—l—l/Z—aw—FA@)\/

(04

—0:V — coth’ € + nd = Ei,

n ~ Ve e = k/(Korg)



The zero-energy mode

A —|—coshf§)_f

fio(8) = C(A + k cosh £)+% [ 22
sinh &

( éAcoshé)
X GXp - 2 ’

A +cosh?§)j

Do(§) = C/(A + kcoshs;)—kf—%( _
sinh &

((f)A coshé)
X exp 5 :

where

k=+1+n; A:A(é)z\/lJrkzsinhzéa

i=(+1/2—a,)/ e d = d/a,




Landau states

ES — ::\/2}1, n = 0, 1,2...,

where the energy Iis measured in units of hv /lg with the
magnetic length |5 =(hc/eB)Y?.

| [’
E?_ ~ ::\/z T ~ ::\/z + (.37 .
n=I 72\/5 ]




| andau levels
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Today and tomorrow

Gap engineering
Strain engineering
Metal-Free Molecular Electronics

GNR-Based Devices with No Analog In
Conventional Silicon Electronics



Ribbons
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