Oscillating Solitons of the Parametrically Driven Damped Nonlinear Schrödinger Equation

E. V. Zemlyanaya

Joint Institute for Nuclear Research, Dubna, Russia

IX Winter School on Theoretical Physics Nonlinear Phenomena in Condensed Matter Dubna, 2011

Parametrically driven damped NLS

Equation under study:

$$i\psi_t + \psi_{xx} + 2|\psi|^2\psi - \psi = h\psi^* - i\gamma\psi.$$

- γ >0 is the damping coefficient,
- h is the amplitude of the parametric driver.
- We are looking for periodic solutions by solving the NLS equation as a **boundary-value problem** on a two-dimensional

domain
$$(-\infty,\infty) \times (0,T).$$

Boundary conditions:

$$\psi(x,t)=0 \quad ext{as } x o \pm \infty,$$

$$\psi(x,t+T)=\psi(x,t).$$

Results of direct numerical simulation

Numerical continuation of stationary **multi-soliton complexes**

(1999) 2568

Method of numerical study. New variables

New variables τ and Ψ :

 $\tau T=t; 0 \le \tau \le 1; \Psi(x,\tau) = \psi(x,t).$

Modified equation with respect of unknown Ψ and T:

 $i\Psi_{\tau} + T \cdot \Phi(\Psi(x, \tau), h, \gamma) = 0$ where $\Phi \equiv \Psi_{xx} + 2|\Psi|^2 \cdot \Psi - \Psi - h\Psi^* + i\gamma\Psi.$

Boundary conditions:

$$\begin{split} \Psi(-L,\tau) &= \Psi(+L,\tau) = 0; & \Psi(x,0) = \Psi(x,1); \\ \text{Additional equation (phase condition)} \\ R &= \text{Re}[\Phi(\Psi(x^*,t^*),h,\gamma)] = 0; & x^* = t^* = 0. \end{split}$$

Method of numerical study. Newtonian scheme (1)

$$Ψ_{k+1} = Ψ_k + ξ_k v_k;$$
 $T_{k+1} = T_k + ξ_k μ_k;$

k – number of iteration;

 $0 < \xi_k \le 1$ parameter of the Newtonian scheme; $v_k = v^{(1)} + v^{(2)} \mu_k$;

(1)
$$iv_{\tau}^{(1)} + T_k v_{xx}^{(1)} + A_k v_{xx}^{(1)} + B_k v_{xx}^{(1)*} = -\Phi_k$$

(2) $iv_{\tau}^{(2)} + T_k v_{xx}^{(2)} + A_k v_{xx}^{(2)} + B_k v_{xx}^{(2)*} = -C_k$

<u>BCs</u>: $v^{(1)}(\pm L,\tau) = -\Psi_k(\pm L,\tau); \quad v^{(2)}(\pm L,\tau) = 0;$ $v^{(1,2)}(x,0) - v^{(1,2)}(x,1) = -[\Psi^{(1,2)}(x,0) - \Psi^{(1,2)}(x,1)]$

$$A_{k} = 4T_{k}\Psi_{k}(\Psi_{k})^{*} - T_{k} - i\gamma T_{k}; \qquad B_{k} = 2T_{k}(\Psi_{k})^{2} - hT_{k}; C_{k} = \Psi_{xx} + 2\Psi_{k}^{*}(\Psi_{k})^{2} - \Psi_{k} - h(\Psi_{k})^{*} - i\gamma\Psi_{k};$$

Method of numerical study. Newtonian scheme (2)

 μ_k is calculated at each iteration as follows

$$\mu_k = \frac{-G - R}{F}$$

$$F = [V_R^{(2)}]_{xx} + 6\Psi_R^2 V_R^{(2)} + 4\Psi_I \Phi_R V_I^{(2)} + 2\Psi_I^2 V_R^{(2)} - V_R^{(2)} - hV_R^{(2)} - \gamma V_I^{(2)}$$

$$G = [V_R^{(1)}]_{xx} + 6\Psi_R^2 V_R^{(1)} + 4\Psi_I \Psi_R V_I^{(1)} + 2\Psi_I^2 V_R^{(1)} - V_R^{(1)} - hV_R^{(1)} - \gamma V_I^{(1)}$$

$$R = [\Psi_R]_{xx} + 2\Psi_R^3 + 2\Psi_I^2 \Psi_R - \Psi_R - h\Psi_R - \gamma \Psi_I$$

$$\Psi_R = \operatorname{Re} \Psi(x^*, 0); \quad \Psi_I = \operatorname{Im} \Psi(x^*, 0)$$

$$V_R^{(1,2)} = \operatorname{Re} V^{(1,2)}(x^*, 0); \quad V_I^{(1,2)} = \operatorname{Im} V^{(1,2)}(x^*, 0)$$

Spatial stepsize 0.05; stepsize in time 0.01; interval [-50,50]

Stability analysis

E.Zemlyanaya, I.Barashenkov, N.Alexeeva. Springer Lecture Notes in Computer Sciences **5434** (2009) 139

Periodic solution is linearized in small perturbation *u+iv*:

$$\psi(x,t) = \psi_0(x,t) + u(x,t) + iv(x,t) \hspace{0.5cm} \psi_0 = \left(egin{array}{c} \mathcal{R}(x,t) \ \mathcal{I}(x,t) \end{array}
ight)$$

After expansion u and v in the Fourier series on the interval (-L,L), according to the Floquet theory we obtain:

$$J\dot{\mathbf{w}}_m = \sum_{n=-N}^{N} H_{mn}(t)\mathbf{w}_n$$
 where $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{q}_n = \pi n/L$, $\mathbf{w}_n = \begin{bmatrix} u_n \\ v_n \end{pmatrix}$

$$H_{mn}(t)=rac{1}{2L}\int_{-L}^{L}e^{i(q_m-q_n)x}\left(egin{array}{cc} q_n^2+1+h-6\mathcal{R}^2-2\mathcal{I}^2&-4\mathcal{R}\mathcal{I}+\gamma\ -4\mathcal{R}\mathcal{I}-\gamma&q_n^2+1-h-2\mathcal{R}^2-6\mathcal{I}^2 \end{array}
ight)dx.$$

The system is solved numerically with initial condition

$$u_n(0) = \delta_{nlpha}, ~~ v_n(0) = 0 ~~ (n = -N,...,N), igg| lpha \ = \ -N,...,N igg|$$

The monodromy matrix is constructed. Its eigenvalues allow us to make conclusions about stability properties of periodic solitons.

Numerical continuation of stationary two-soliton solutions

E.Zemlyanaya, I.Barashenkov, N.Alexeeva. Springer Lecture Notes in Computer Sciences 5434 (2009) 139
E.Zemlyanaya, A.Alexeeva. Theor. and Math. Phys. 159 No.3 (2009) 536-544

Numerical continuation of stationary two-soliton solutions

Numerical

Hopf bifurcations points of stationary solitons at the (h,γ) -plane

Numerical results (1) Weak damping: γ=0.265; 0.2; 0.1

Numerical results (2) Moderate damping: γ=0.3, 0.35

Numerical results (3) One-periodic two-soliton solutions Moderate damping: γ =0.35, 0.38.

Numerical results (4)One-periodic two-soliton solutionsModerate damping: γ=0.41 (the case of 4 HBs)

Numerical results (5)One-periodic two-soliton solutionsStrong damping: γ=0.565

I.V.Barashenkov, E.V.Zemlyanaya. Soliton complexity in the damped-driven nonlinear Schroedinger equation: stationary, periodic, quasiperiodic complexes. Submitted to Phys.Rev.E

Numerical results (6) Stability diagram of stationary and timeperiodic solitons at the (h,γ)-plane

3- and 5-mode approximation (1)

We decompose
$$\psi$$
 as

$$\psi = A_+ [U(\bar{x}, \bar{t}) + iV(\bar{x}, \bar{t})]e^{-i\theta_+},$$
This casts the NLS in the form:

$$-V_t - 2\Gamma V = -U_{xx} + U - 2(U^2 + V^2)U,$$

$$+U_t + 2HV = -V_{xx} + V - 2(U^2 + V^2)V$$
We expand ψ (*x*;*t*) as:
u and *v* are real;
A and *B* are complex
Resulting system of equations:

$$\begin{split} u_{xx} &- u + 2(u^2 + v^2)u + 4(3|\mathcal{A}|^2 + |\mathcal{B}|^2)u + 4(\mathcal{AB}^* + \mathcal{A}^*\mathcal{B})v - 2\Gamma v = 0\\ v_{xx} &- v + 2(u^2 + v^2)v + 4(|\mathcal{A}|^2 + 3|\mathcal{B}|^2)v + 4(\mathcal{AB}^* + \mathcal{A}^*\mathcal{B})u + 2Hv = 0,\\ \mathcal{A}_{xx} &- \mathcal{A} + 2(3u^2 + v^2)\mathcal{A} \\ &+ 2(3|\mathcal{A}|^2 + 2|\mathcal{B}|^2)\mathcal{A} + 2(2uv + \mathcal{A}^*\mathcal{B})\mathcal{B} - 2\Gamma\mathcal{B} - i\Omega\mathcal{B} = 0,\\ \mathcal{B}_{xx} &- \mathcal{B} + 2(u^2 + 3v^2)\mathcal{B} \\ &+ 2(2|\mathcal{A}|^2 + 3|\mathcal{B}|^2)\mathcal{B} + 2(2uv + \mathcal{B}^*\mathcal{A})\mathcal{A} + 2H\mathcal{B} + i\Omega\mathcal{A} = 0. \end{split}$$

where $\Omega = 2\pi/(A_+^2 \cdot T)$, $\Gamma = \gamma/A_+^2$ and $H = \sqrt{h^2 - \gamma^2}/A_+^2$.

Summary

- A boundary-value problem and stability problem have been formulated for numerical investigation of temporally periodic solitons of parametricaly driven damped NLS.
- Transformations of temporally periodic solitons have been numerically studied; interconnection between coexisting branches of stable and unstable solutions has been analyzed.
- New temporally periodic solitons have been found.
- Stability diagram of stationary and oscillating two-soliton complexes has been constructed at the (h,γ) -plane.
- Shown that the bifurcation diagram can be reproduced a three- and five-mode approximation.

THANK YOU!