Experiments with Fluxon ratchet

Edward Goldobin

Physikalische Institut — Experimentalphysik II, University of Tubingen, Germany

Dubna Winter School 05.02.2011

What is a Ratchet?

Point-like Brownian particle in asymmetric periodic potential

Aim: to rectify fluctuations

Reimann, Phys. Rep. **361**, 57 (2002).
P. Hänggi, F. Marchesoni, and F. Nori, Ann. Phys. (N.Y.) **14**, 51 (2005).
P. Hänggi and F. Marchesoni, Rev. Mod. Phys. **81**, 387 (2009).

Ratchet effect

E.Goldobin -- Fluxon ratchet

What is a Josephson Vortex Ratchet (JVR)?

JVR Principle (Pert. theory approx.)

Particle \rightarrow fluxon Potential $\rightarrow w(x), h(x), j(x)$ Periodic \rightarrow annular LJJ (*n* periods)

Advantages of "Josephson"

Directed motion \rightarrow voltage Band \rightarrow up to 100GHz overdamped \leftrightarrow underdamped quantum ratchet

Peculiarities

Particle→relativistic soliton

Carapella, PRB **63**, 54515 (2001)

Carapella et al., PRL 87, 77002 (2001)

📖 E. Goldobin, et al. Phys. Rev. E **63**, 031111 (2001)

M. Beck, et al. Phys. Rev. Lett. 95, 090603 (2005)

Long Josephson junctions

Different approaches to construct Asymmetric Periodic Potential

Carapella et al., PRL 87, 77002 (2001) Carapella, PRB **63**, 54515 (2001) Internal modes: $\phi_{,tt} - \phi_{,xx} + \frac{\partial V(\phi)}{\partial \phi} = -\frac{\partial V_{\text{ext}}}{\partial \phi} - \beta \phi_{,t} + \eta(x,t)$ Willis et al., PRE **69**, 056612 (2004) PRE 71, 016604 (2005) Morales-Molina, et al., PRL **91**, 234102 (2003) Constantini, et al., PRL 87, 114102 (2001)

Asymmetric substrate pot.+symm. drive: move soliton in some dir.

Salerno et al., PRE **65**, 25602 (2002); Constantini et al., PRE **65**, 51103 (2002)

Asymmetric potential

$$\phi_{xx} - \phi_{tt} - \sin(\phi) = \alpha \phi_t - \gamma(x) + h_x(x) - \frac{w_x(x)}{w(x)} \left[\phi_x - h(x) \right]$$

$\mathcal{I}(x)$	rotential.	W(X)	n(x)	$\int (X)$	$m(x_0)$	
	tunability?	no	yes	yes		
	topo. limits?	no	yes	no		
	<i>I/H</i> source?	no	yes	yes		 <u> </u>

📖 E. Goldobin, et al. PRE **63**, 031111 (2001)

E.Goldobin -- Fluxon ratchet

JJ width modulation – potential for fluxon

$$\phi_{xx} - \phi_{tt} - \sin(\phi) = \alpha \phi_t - \gamma(t) - \frac{w_x(x)}{w(x)} \phi_x$$

$$H = \int_{0}^{L} \left[\frac{\phi_t^2}{2} + \frac{\phi_x^2}{2} + (1 - \cos \phi) \right] w(x) \, dx$$

$$\phi(x,t) = 4 \arctan \exp\left(\frac{x - ut - x_0}{\sqrt{1 - u^2}}\right)$$

$$U(x_0) = \int_{0}^{L} \frac{4w(x)}{\cosh^2(x - x_0)} \approx 8w(x_0)$$

Non-relativistic approx, "slow" modulation

📖 E. Goldobin, et al. PRE **63**, 031111 (2001)

Asymmetry due to non-uniform field

- $H(x) = H \cdot \cos \alpha$ $U(x_0) = -2\pi w h(x_0)$
- Tunable potential
- Topological limitations

How an injector can create^{Goldobin -- Fluxon ratchet} strongly asymmetric saw-tooth notential?

E. Goldobin, et al. Phys. Rev. E 63, 031111 (2001)

System under investigation: Relativistic Deterministic JVR

For theorists

$$\phi_{xx} - \phi_{tt} - \sin \phi =$$

= $\alpha \phi_t + h_x(x) - \gamma_{ac} \sin(\omega t)$

 $\begin{array}{l} \alpha - \text{damping } (\alpha <<\!\! 1) \\ h(x) - \text{potential profile (saw-tooth)} \\ \gamma_{\text{ac}} - \text{amplitude of ac drive} \\ \gamma_{\text{dc}} - \text{dc force (usually =0)} \end{array}$

$$\phi(x,t) = 4 \arctan \exp(x)$$

$$\left[\frac{x - x_0(t)}{\sqrt{1 - \dot{x}^2}}\right]$$

One can derive eq. for $x_0(t)$ in the PT limit, assuming rigid fluxon shape.

E. Goldobin et al, PRE 63, 031111 (2001)
G. Carapella et al., PRB 63, 054515 (2001).

M. Beck, et al. PRL 95, 090603 (2005)

Geometry

M. Beck, E. Goldobin, et al. Phys. Rev. Lett. **95**, 090603 (2005)

Insertion of fluxon

Quasi-static drive (100Hz)

Apply: $I(t) = I_{ac} \cdot \cos(\omega t)$

I-V Characteristic

Measure : $V_{dc}(I_{ac}) = \langle V \rangle (I_{ac})$

Rectification curve $V_{dc}(I_{ac})$

M. Beck, E. Goldobin, et al. Phys. Rev. Lett. **95**, 090603 (2005)

Ratchet effect vs. potential height

M. Beck, E. Goldobin, et al. Phys. Rev. Lett. 95, 090603 (2005)

Ratchet effect vs. driver shape

Figures of merit

Adiabatic JVR: optimazation

Loaded quasi-static JVR

How large should be the dc counter force to stop the ratchet?

In adiabatic regime the result can be obtained from the IVC: $V(I) = V(I_{ac} \sin(\omega t) + I_{dc})$

Averaging over one period we get

$$\langle V \rangle (I_{ac}, I_{dc})$$

Solving $\langle V \rangle(I_{ac}, I_{dc}) = 0$ for I_{dc} we get $I_{dc}^{\text{stop}}(I_{ac})$

Results for a simple step-like IVC model (I_{c+}, I_{c-})

stopping force grows linearly
it saturates in the middle of rect. window
saturation value is equal to rect. window size
make window as large as possible (large h₀)
operate ratchet in the 2nd half of rect. window!

High frequency drive – non Adiabatic JVR (nA-JVR)

What means high frequency?

- Period of the drive is comparable with the time it takes for fluxon to move around the annulus
- periodic dynamics \rightarrow integer number of turns
- discrete average velocity=desctere average voltage steps

→ Underdamped system: inertial effects, chaos

Setup:

- Resonator cupper box, the first mode @ 6.0 GHz
- Sender: rf-antenna
- Receiver: JJ-Electrodes
- $I_{ac} \leftrightarrow \text{power } P$

nA-JVR: Quantized rectification

Non-monotonous steps!

nA-JVR: Period-2 dynamics

rf current amplitude

E.Goldobin -- Fluxon ratchet

nA-JVR: half integer steps & current reversal

E.Goldobin -- Fluxon ratchet

nA-JVR: Half integer steps & current reversal

nA-JVR: fluxon trajectories & period 2 dynamics

E.Goldobin -- Fluxon ratchet

nA-JVR: Period-1 dynamics: forward step

E.Goldobin -- Fluxon ratchet

nA-JVR: Period 1&2 dynamics, current (voltage) reversal

nA-JVR: Peak velocities

 $\langle u \rangle = 0.22$: \square A. Ustinov, et al. PRL **93**, 87001 (2004) $\langle u \rangle = 0.33$: \square G. Carapella, et al. Physica C **382**, 337 (2002) $\langle u \rangle = 0.17 @ \alpha = 1$: \square F. Mertens, et al. PRE **74**, 66602 (2006)

nA-JVR loaded by dc current

nA-JVR: stopping force (current) experiment vs. simulation

Experiment

Simulation

JVR made of Intrinsic JJ stack

- To increase both f_{max} and V_{max} we need to increase v_{max}
- To increase V_{\max} one can connect several ratchets in series
- Idea: use intrinsic Josephson junctions (IJJ)
- $f_{\rm pl} \sim 150 \, {\rm GHz}$
- However, IJJ are not independent (coupled).

$$c_q = \frac{c_s}{\sqrt{1 - 2s\cos(\pi q/(N-1))}}, \quad q = 1...N.$$

In-phase mode: $c_1 \to c_0/\sqrt{\epsilon} \gg c_s$.

H. B. Wang et al., PRB **80**, 224507 (2009)

Samples, I-V characteristic

Rectification

H. B. Wang et al., PRB **80**, 224507 (2009)

Summary & Outlook

Fluxon (Josephson Vortex) ratchet

- principles of operation (asymmetric periodic potential, particle=fluxon)
- advantages
- → Quasi-static (adiabatic) drive:
 - rectification curves vs. potential height, driver shape
 - figures of merit
 - stopping force
- Non-adiabatic drive:
 - quantized rectification
 - period 2 dynamics:
 - subharmonic steps,
 - pseudo-integer steps
 - current (voltage) reversal
 - loaded ratchet, stopping force
- Intrinsic Josephson vortex ratchet

Thanks for your attention!

Questions?

Can I rectify a white noise?

Ratchet or just synchronization?

How do we measure?

Josephson junction

Fortgeschrittenen-Praktikum 2.11.2004

Long Josephson junctions

Content

Introduction

- What is (long) Josephson junction?
 - What is a ratchet?
- Why to build ratchets using long Josephson junctions?
- → How to create an efficient asymmetric periodic potential?
- Results (experiment and simulations)
 - Everything under control: 1 injector, 2 injectors..(calibration)
 - Quasi-statically (adiabatically) driven ratchet
 - Non-adiabatic effects
- Conclusions & outlook

Asymmetric potential

Potential:	w(x)	h(x)	j(x)
tunability?	no	yes	yes
topological. limits?	no	yes	no
current/field source?	no	yes	yes

E. Goldobin, et al. PRE **63**, 031111 (2001)

Asymmetry due to non-uniform field

 $H(x) = H \cdot \cos \alpha$ $U(x_0) = -2\pi wh(x_0)$

- Tunable potential
- Topological limitations

E. Goldobin, et al. PRE **63**, 031111 (2001)

Asymmetric potential

$$\phi_{xx} - \phi_{tt} - \sin(\phi) = \alpha \phi_t - \gamma(x) + \frac{h_x(x)}{w(x)} - \frac{w_x(x)}{w(x)} \left[\phi_x - h(x)\right]$$

$$H = \int_{0}^{L} w(x) \left[\frac{\phi_{t}^{2}}{2} + \frac{(\phi_{x} - h)^{2}}{2} + (1 + \cos\phi) \right] dx \qquad U(x_{0}) = \int_{-\infty}^{+\infty} \frac{4w(x)}{\cosh^{2}(x - x_{0})} - \frac{2w(x)h(x)}{\cosh(x - x_{0})} dx$$

 $U(x_0) = -2\pi w h(x_0)$

E. Goldobin, et al. PRE **63**, 031111 (2001)