Experiments with fractional magnetic flux quanta

Edward Goldobin

University of Tübingen, Germany

Deutsche Forschungsgemeinschaft

LANDESSTIFTUNG Baden - Württemberg

Where is Tübingen?

Tübingen:

- small university town on Neckar
- population ~80000
- 30 km south from Stuttgart
 - -- a capital of Baden-Württemberg

University:

- students ~30000
- university is 530 years old !!!
- two faculties of theology ;-)
- strong medicine
- phys., chem., math are small

Our Group (~30 people):

- 2 Profs: R. Kleiner, D. Koelle
- 1 Assistant Prof.
- 4 Post Docs
- ~12 PhD students
- ~10 Diploma students

Fluxoid quantization

$$\frac{\Phi_0}{2\pi} \oint_C \nabla \theta \, d\mathbf{l} = \oint_C \mathbf{A} \, d\mathbf{l}.$$
$$\oint_C \mathbf{A} \, d\mathbf{l} = \oint_S \operatorname{rot} \mathbf{A} \, d\mathbf{S} = \oint_S \mathbf{B} \, d\mathbf{S} = \Phi,$$
$$\Phi = \frac{\Phi_0}{2\pi} \oint_C \nabla \theta \, d\mathbf{l}.$$
$$\oint_C \nabla \theta \, d\mathbf{l} = 2\pi n.$$
$$\boxed{\Phi = n\Phi_0}$$

$$\Phi_0 = \frac{h}{2e} \approx 2.07 \cdot 10^{-15} \,\mathrm{Wb}$$

 $\mathbf{j}_s = \frac{1}{\Lambda} \left(\frac{\Phi_0}{2\pi} \nabla \theta - \mathbf{A} \right)$

Josephson junction

Conventional JJ. (0-junction) Josephson phase : $\phi = \theta_2 - \theta_1$ $I = I_c \sin(\phi)$ +other terms

Unconventional JJ (π -junction)

 $I = -I_c \sin(\phi) = I_c \sin(\phi + \pi)$

$$j_c = 1 - 5000 \text{ A/cm}^2$$
, (Nb-AlO_x-Nb)

Long Josephson 0- π junction

YBCO-Nb ramp zigzags

E. Goldobin, R. Straub, D. Dönitz, D. Koelle, R. Kleiner, H. Hilgenkamp (2003).

LTSEM image of supercurrent

H.-J. Smilde at al. PRL 88, 57004 (2002)

SFS/SIFS junctions

U. Ryazanov et al. PRL 86, 2427 (2001)

T. Kontos et al. PRL **89**, 137007 (2002)

Deriving sine-Gordon equation

E. Goldobin et al. PRB 66, 100508 (2002)

Deriving sine-Gordon equation

- $\lambda_{J} = \sqrt{\Phi_{0} / (2 \pi \mu_{0} j_{c} d')}$ $\omega_{p} = \sqrt{2 \pi j_{c} / (\Phi_{0} C')}$ $\omega_{c} = 2 \pi j_{c} \rho / \Phi_{0}$ $\gamma(x) = j_{e}(x) / j_{c}$ $Q = 2 \pi \mu_{0} \Lambda \lambda_{I}^{2} / \Phi_{0}$
- → Josephson penetration depth ~0.3–100 μ m → Josephson plasma frequency ~10–10³GHz
- \rightarrow Josephson critical frequency ~1–10⁵ GHz \rightarrow normalized bias current density

New normalized units: coordinate x to λ_{j} , time t to ω_{p}^{-1}

E. Goldobin et al. PRB 66, 100508 (2002)

sine-Gordon equation for 0- π LJJ

$$\phi_{xx} - \phi_{tt} - \sin(\phi) = \alpha \phi_t - \gamma(x) + h_x(x) + \theta_{xx}(x)$$

$$\phi(x,t) = \mu(x,t) + \Theta(x).$$

 $\mu(x,t)$ — magnetic component of the phase

$$\mu_{xx} - \mu_{tt} - \sin(\mu) \underbrace{\cos(\theta)}_{\pm 1} = \alpha \mu_t - \gamma(x) + h_x(x).$$

Goldobin et al., PRB 66, 100508 (2002)

Semifluxon=vortex carrying $\Phi_0/2$

 $\phi_{xx} - \sin(\phi) = \theta_{xx}(x)$

Pinned, two degenerate states \uparrow and \downarrow

Xu et al., PRB 51, 11958 (1995)

Goldobin et al., PRB 66, 100508 (2002)

Mechanical analog:pendula chain

 $\mu(x)$

Semifluxons observation

SQUID microscopy on YBCO-Nb ramp zigzag LJJs

H. Hilgenkamp et al. Nature **422**, 50 (2003).

Ground states

When do the semifluxons appear?

When the semifluxon solution is stable?

0- π boundary: semifluxon vs. μ=0

The energy of flat phase is 2 per unit of length, i.e. diverges at large *L*.

 $U = 16 \frac{\mathcal{G}^2}{1 + \mathcal{G}^2} = 8 - 4\sqrt{2} \approx 2.343$

5

• One $0-\pi$ -boundary:

ohase, magnetic field

- always semifluxon
- ▲ flux-less flat phase solution (0- π) is unstable (has infinite energy)!
- E. Goldobin et al. Phys. Rev. B 67, 224515 (2003)

π -facet of length *a*: ↑↓ vs. μ=0

 \rightarrow Two 0- π -boundaries at a distance *a*:

- \rightarrow semifluxons in $\uparrow \downarrow$ state are formed for $a > a_c$
- \rightarrow flux-less flat phase solution (0- π -0) for $a < a_c$.
- Important e.g. for SQUID microscopy!

Goldobin et al., Phys. Rev. B 67, 224515 (2003)

Behavior of $a_c^{(N)}(b)$

 $a_c^{(2)} \approx 1.55 \pm 0.05$ $a_c^{(4)} = 1.35 \pm 0.05$ $a_c^{(6)} = 1.15 \pm 0.05$

A. Zenchuk, E. Goldobin, PRB 69, 024515 (2004).

Unipolar (FM) states

semifluxon+semifluxon = fluxon!

$$egin{aligned} U_{\uparrow\uparrow}(\infty) &= 2U_{SF} pprox 4.6, \quad U_{\uparrow\uparrow}(0) = U_F = 8 \ U_{\uparrow\downarrow}(\infty) &= 2U_{SF} pprox 4.6, \quad U_{\uparrow\downarrow}(0) = 0 \end{aligned} \qquad U_{\uparrow\uparrow}(a) \geq U_{\uparrow\downarrow}(a) \end{aligned}$$

Switching on the current...

- at zero bias we have a static pinned semifluxon.
 - bias current pulls semifluxons, just like fluxons.
 - but semifluxons are pinned --> deformation
 - at bias= $2/\pi I_c \approx 0.64 I_c$ switching to the R-state

Goldobin et al., PRB 67, 224515 (2003).

$I_c(H)$ of long 0- π JJ

N. Lazarides, PRB 69, 212501 (2004).

Semifluxon based oscillator

N. Lazarides, PRB 69, 212501 (2004).

Two biased semifluxons

- The distance between 0- π boundaries $a > a_c$
- $\uparrow \downarrow$ state at zero bias
- current pushes semifluxons to each other => swap

 $\uparrow \downarrow \stackrel{\gamma=0.08}{\longrightarrow} \downarrow \uparrow$

Goldobin et al., PRB **67**, 224515 (2003)

Sample & injectors calibration

Observed rearrangement: ↑↓↔↓↑

A. Dewes et al., PRL **101**, 247001, (2008)

8 biased semifluxons

- The distance between corners $a > a_c$
- AFM ordered state at zero bias

Goldobin et al., PRB **67**, 224515 (2003)

π facet of length $a < a_c$

- The distance between corners $a < a_c$
- flat phase state at zero bias
- increasing bias with step 0.1. $\gamma_c = 0.76$

"semifluxons" emerge under the action of bias current

Goldobin et al., PRB 67, 224515 (2003).

Artificial 0-κ junctions

A. Ustinov, Appl. Phys. Lett. 80, 3153 (2000).

Goldobin et al., Phys. Rev. Lett. 92, 057005 (2002)

Nb LJJ with two injectors

$\lambda_J \approx 30 \ \mu m \ (j_c \approx 100 \ \text{A/cm}^2)$

Calibration of injectors

Goldobin et al., PRL 92, 057005 (2004)

$I_c(H)$ in 0-0 and in 0- π states

Goldobin et al., PRL 92, 057005 (2004)

Classical Zero Field Step (ZFS)

Semifluxon -- half-integer ZFS

Finite length --> image technique:

- 1 real semifluxon + 2 anti-semifluxons (images)
- Bias current \rightarrow Force \rightarrow SF hopping.

Goldobin et al., Phys. Rev. B 67, 224515 (2003).

Half integer ZFS (full IVC)

Goldobin et al., PRL 92, 057005 (2004)

Half integer ZFS

Goldobin et al., PRL 92, 057005 (2004)

к-vortex: broken symmetry

Mechanical analog:pendula chain

 $\mu(x)$

Energy of a single vortex

Goldobin et al., Phys. Rev. B 70, 174519 (2004)

Ground states @ (+ κ , + κ) discont.

Ground states @ (+ κ ,- κ) discont.

Crossover for symm. AFM state

Crossover for asymm. AFM state

New: collective state!

Bistability region (κ)

A. Dewes et al., PRL **101**, 247001, (2008)

Quantum semifluxons?

Thermal escape vs. MQT

Summary

- Various types of 0- π LJJ: GB, d-wave/s-wave, SFS/SIFS
- sine-Gordon equation with discontinuities, semifluxon
- Ground state: zero phase (no flux) vs. semufluxon states
- Bias current:
 - rearrangement,
 - emerging,
 - half-integer ZFS,
 - oscillators
- Arbitrary fractional vortices
 - ground states
 - energy and stability
 - two vortex molecules

