The Versatile Soliton

Alexandre T. Filippov

Modern Birkhäuser Classics

Many of the original research and survey monographs in pure and applied mathematics published by Birkhäuser in recent decades have been groundbreaking and have come to be regarded as foundational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain accessible to new generations of students, scholars, and researchers.

Introduction

I An Early History of the Soliton

Chapter 1. A Century and a Half Ago

Beginning of Wave Theory	•
The Brothers Weber Study Waves in Water	•
From Waves in Water to Waves in Ether	•
Scientific Discoveries Mainstream and Ahead of Time	3
Science and Society	•

Chapter 2. The Great Solitary Wave of John Scott Russell

Before the Fateful Encounter		•		•		•
John Russell Meets The Solitary Wave						
That is Impossible!						•
All the Same it Exists!						•
The Solitary Wave in Solitude					•	•
Wave or Particle?			•			•

Chapter 3. Relatives of the Soliton

Hermann Helmholtz and the Nerve Pulse	e	•	•					•	
Further Adventures with the Nerve Pulse	e	•	•	•			•		
Hermann Helmholtz and Eddies	•	•	•	•	•	•	•	•	

Lord Kelvin's "Vortex Atoms" .	•	•	•	•	•		•	•	•	•	•	•	•	
Lord Ross and Vortices in Space	•	•	•	•	•			•			•	•	•	
About Linearity and Nonlinearity	•	•		•	•					•		•	•	

II Nonlinear Oscillations and Waves

Chapter 4. A Portrait of the Pendulum

Chapter 5. From Pendulum to Waves and Solitons

Waves in Chains of Bound Particles
Finding Modes in Chains of Particles – Important Mathematical
A Historic Digression. Bernoulli Family and Waves
D'Alembert's Waves and Debates about them
On Discrete and Continuous
The Speed of Sound and How it was Measured
Dispersion in Chains of Atoms
On How to "Perceive" the Fourier Expansion
Dispersion of Waves on Water Surface
On the Speed of a Pack of Waves
How Much Energy is Stored in a Wave?

III The Present and Future of the Soliton	129
Chapter 6. Frenkel's Solitons	131
What is Theoretical Physics?	. 131
Ya.I. Frenkel's Ideas	. 134
Atomic Model of the Moving Dislocation after Frenkel and Kontorova	. 135
Interactions Between Dislocations	. 138
"Live" Solitonic Atom	. 139
Dislocations and the Pendulum	. 141
The Fate of the Waves of Sound	. 145
Let Us Have a Look at Dislocations	. 148
Desktop Solitons	. 150
Other Close Relatives of Dislocations: the Mathematical Branch	. 152
Magnetic Solitons	. 157

Chapter 7. Rebirth of the Soliton	160
Can Men be on Friendly Terms with the Computer?	162
Many-faceted Chaos	166
Enrico Fermi is Astonished by the Computer	171
Russell's Soliton Returns	175
Ocean Solitons: Tsunami, the Tenth Wave	184
Three Solitons	188
Soliton Telegraph	191
The Nerve Pulse — Elementary Particle of Thought	194
Vortices – Everywhere	199
Chapter 8. Modern Solitons	204
Vortices in Superfluids	. 207
Josephson Solitons	. 212
Elementary Particles and Solitons	. 218
Appendix I. Lord Kelvin On Ship Waves	232
Appendix II. Skyrme's Soliton	240
Mathematics Appendix	245

1. The KdV equation was written in Chapter 7 (eqs.(7.1) and (7.2)). Usually one writes it for the dimensionless function $u \equiv 3y/4h$ depending on the dimensionless time and space variables $T \equiv \sqrt{6v_0t}/h$ and $X \equiv \sqrt{6x}/h$:

$$\dot{u} + (u + u^2 + u'')' = 0.$$

Here the dot denotes the derivative with respect to "time" T and the prime denotes the "space" derivative (with respect to X). The one-soliton solution of this equation is

$$u = \frac{6k}{\cosh^2[k(X - VT)]},$$

where k is an arbitrary real number and $V = 1 + 4k^2$ (compare this to eqs. (7.1) and (7.2)). By replacing in the KdV equation u^2 with u^3 , we get the so-called "modified" KdV equation. Its one-soliton solution is

$$u = \sqrt{2k} / \cosh[k(X - VT)], \quad V = 1 + k^2.$$

Finally, let us write a typical equation describing nonlinear diffusion

$$u''-\dot{u}=u(u-1)(u-a)$$

and its solitary wave solution

$$u = \left[1 + \exp[(X - VT)/\sqrt{2}]\right]^{-1}, \quad V = (1 - 2a)/\sqrt{2}$$

The sine-Gordon equation was written in Chapter 6 (eq. (6.11)). One usually writes it for the function $u = \pi + \phi$ of the dimensionless variables $T = \omega_0 t$ and $X = \omega_0 x / v_0$:

$$u''-\ddot{u}=\sin u.$$

Its one-soliton solution was also written in Chapter 6:

$$u = 4 \arctan \exp[\beta(X - VT)], \quad \beta = 1/\sqrt{1 - V^2}.$$

Two solitons are described by the solution

 $u = 4 \arctan[V \sinh(\beta x) / \tanh(\beta V T)].$

The soliton-antisoliton solution is

$$u = 4 \arctan[V^{-1}\sinh(\beta VT)/\cosh(\beta x)],$$

and the breather solution is

$$u = 4 \arctan[a \sin(bT)/b \cosh(aX)], \quad a^2 + b^2 = 1.$$

Typical solitons in discrete lattices are the solitons in the nonlinear **Toda lattice**. The system of equations describing movements of "atoms" in the Toda lattice is the following:

$$\ddot{u}_n = \exp(u_{n+1} - u_n) - \exp(u_n - u_{n-1}),$$

where u_n are the discrete (dimensionless) coordinates of the atoms. The solitonic solution of the Toda system is given by the formulae

$$u_n = s_n - s_{n+1}$$
, $s_n = \ln\{1 + \exp[2(an + T \sinh a)]\}$

where a is an arbitrary real number. Note that the discretized KdV equation has the form

$$\dot{u}_n = \exp u_{n+1} - \exp u_{n-1},$$

while the continuum limit of the Toda equations is the Boussinesq equation

$$\ddot{u}=(u+u^2+u'')'',$$

which sometimes is called the nonlinear string equation.

Solitons with the PENDULUM and other related physical systems

Figure 4.1 The mathematical pendulum

Phase portrait of the pendulum

The "Soliton" Solution of the Pendulum Equation

To better understand the behavior of the soliton solution, let us directly express ϕ in terms of t by using the inverse to the tangent function

$$\phi = \pi - 4 \arctan(e^{-\omega_0 t}). \tag{4.9}$$

A Portrait of the Pendulum

Figure 4.15 Bending shapes of a wire

Motions of the Pendulum and the "Tame" Soliton

Duality between the pendulum and wire shapes

Both are described by the same graphs

 ϕ grows from $-\pi$ to $+\pi$. Its dependence on s is described by the formula (4.9) after substituting s for t. The parameter ω_0 depends on the applied force F. If the wire is infinitely long and ideally elastic, the loop can freely move along the wire. This loop is one of the simplest solitons. We may call it the "tame" soliton.

Note that all bending shapes of the ideal infinitely long wire $\phi(s)$ describe motions of the pendulum. This remarkable analogy between seemingly very different phenomena was discovered⁵⁷ by the German physicist Gustav Kirchhoff (1824– 1887) and is called "Kirchhoff's analogy." In fact he discovered a much more general analogy between the states of deformed elastic bodies and some motions of rigid bodies. Unfortunately, this beautiful analogy is practically forgotten. We will say more about it when we turn to Frenkel's soliton.

Figure 6.8 Euler's soliton (a) and antisoliton (b)

Frenkel - Kontorova soliton ("sine – Gordon" soliton)

$$m\ddot{y}_n = -f_0\sin(2\pi y_n/a) + k(y_{n+1} - 2y_n + y_{n-1}). \tag{6.1}$$

Equation (6.1) is the main equation of the Frenkel—Kontorova model. We will now find the solution of this equation, which describes one moving dislocation.

With the notation 2π

$$y_n(t)/a = \psi(t, x), \ x = na$$

in the continuum limit $a \rightarrow 0$, we have the nonlinear equation

$$\ddot{\psi} = v_0^2 \psi'' - \omega_0^2 \sin \psi$$

A model of dislocation

Figure 8.4 Electric scheme of a chain of the Josephson junctions

$$I = I_c \sin \phi, \qquad V = (\Phi_0/2\pi c)\dot{\phi}, \qquad \ddot{\phi} + (RC)^{-1}\dot{\phi} + j_c \sin \phi = j,$$

$$L (L^{-1} \phi_{\mathbf{x}})_{\mathbf{x}} - LC \phi_{\mathbf{u}} - \lambda_{\mathbf{j}}^{-2} (\mathbf{x}) \sin \phi (\mathbf{x}, t) = \bar{a} \phi_{\mathbf{t}}$$
$$\phi = 2\pi \Phi (\mathbf{x}, t) / \Phi_{\mathbf{0}}$$
$$\phi_{\mathbf{x}\mathbf{x}} - \phi_{\mathbf{u}} - [1 - \sum_{i=1}^{n} \mu_{i} \delta (\mathbf{x} - \mathbf{x}_{i})] \sin \phi (\mathbf{x}, t) = a \phi_{\mathbf{t}}$$

Yu.Galpern, ATF, Soliton bound states in long Josphson junctions, 1983, JETP

ATF, Galpern, Boyadjiev, Puzynin. 1986

$$\phi'' = \sum \mu_n \delta(x - x_n) \sin \phi(x) + \gamma(x),$$

$$\phi'(0) = h_0, \ \phi'(l) = h.$$

The Josephson map and Chaos

A.T.Filippov and Yu.S.Gal'pern, Phys. Lett. A **172** (1993),471 magnetic flux distribution $\phi(x)$ in a homogeneous lattice may be described by the equation

$$\frac{d^2}{dx^2}\phi(x) = \sum_n \mu \delta(x - x_n) \sin \phi(x) + \gamma.$$
(1)

Then, the flux distribution at the n - th interval $x_n < x < x_{n+1}$ is expressed as

$$\phi_n(x) = a_n + b_n(x - x_n) + \frac{1}{2}\gamma(x - x_n)^2, \qquad (2)$$

Assuming the lattice to be periodic $(x_{n+1} - x_n = \Delta)$, we can determine the coefficients a_n and b_n by solving the equation

$$a_n = a_{n-1} + \bar{b}_{n-1} + \frac{1}{2}\bar{\gamma},$$

$$\bar{b}_n = \bar{b}_{n-1} + \bar{\mu}\sin a_n + \bar{\gamma}$$
(3)

A detailed study of JM

$$X_{n+1} = X_n + P_{n+1}$$

 $P_{n+1} = P_n - \frac{K}{2\pi} \sin(2\pi X_n) + \Gamma$

Y. Nomura, Y.H. Ichikawa and A.T. Filippov Stochasticity in the Josephson Map

(Received - Apr. 10, 1996)

NIFS-413

Apr. 1996

Phase space portrait of the Josephson map for the stochastic parameters ; a) K = 1.3, b) K = 2.1 and c) K = 3.3. The number attached to each frame stands for the value the bias Γ .

In the present studies, we have shown that the external uniform bias imposed on the system described by the standard map gives rise to rich manifestation of the nonlinear behavior, with the sensitive dependence on the control parameters.

Vortices in water, superflud liquids, in Universe...

From MACRO to MICRO and back

A relation between solutions of Einstein's equations and equations of Navier – Stokes, etc...

Unity of UNIVERSE and theories of EVERYTHING

Figure 3.4 Kelvin's oval

Figure 7.14 Collision of two vortex pairs according to McWilliams and Zabusky

Figure 3.7 Kelvin's idea of vortex atoms. Differently knotted vortex rings represent different atoms

Figure 8.1 Superfluid vortex and its flow environment

The Universe in a Helium Droplet

GRIGORY E. VOLOVIK

Low Temperature Laboratory, Helsinki University of Technology and Landau Institute for Theoretical Physics, Moscow

CONTENTS

1 Introduction: GUT and anti-GUT

- I QUANTUM BOSE LIQUID
- 2 Gravity
 - 2.1 The Einstein theory of gravity
 - 2.1.1 Covariant conservation law
 - 2.2 Vacuum energy and cosmological term
 - 2.2.1 Vacuum energy
 - 2.2.2 Cosmological constant problem
 - 2.2.3 Vacuum-induced gravity
 - 2.2.4 Effective gravity in quantum liquids
- 3 Microscopic physics of quantum liquids
 - 3.1 Theory of Everything in quantum liquids

III TOPOLOGICAL DEFECTS

13	Topological classification of defects	159
	13.1 Defects and homotopy groups	159
	13.1.1 Vacuum manifold	160
	13.1.2 Symmetry G of physical laws in ³ He	160
	13.1.3 Symmetry breaking in ³ He-B	161
	13.2 Analogous 'superfluid' phases in high-energy physics	162
	13.2.1 Chiral superfluidity in QCD	162
	13.2.2 Chiral superfluidity in QCD with three flavors	164
	13.2.3 Color superfluidity in QCD	164
14	Vortices in ³ He-B	165
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects	$165 \\ 165$
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects 14.1.1 Fundamental homotopy group for ³ He-B defects	$165 \\ 165 \\ 165$
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects 14.1.1 Fundamental homotopy group for ³ He-B defects 14.1.2 Mass vortex vs axion string	$165 \\ 165 \\ 165 \\ 165 \\ 165$
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects 14.1.1 Fundamental homotopy group for ³ He-B defects 14.1.2 Mass vortex vs axion string 14.1.3 Spin vortices vs pion strings	165 165 165 165 166
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects 14.1.1 Fundamental homotopy group for ³ He-B defects 14.1.2 Mass vortex vs axion string 14.1.3 Spin vortices vs pion strings 14.1.4 Casimir force between spin and mass vortices	$165 \\ 165 \\ 165 \\ 165 \\ 166 \\$
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects 14.1.1 Fundamental homotopy group for ³ He-B defects 14.1.2 Mass vortex vs axion string 14.1.3 Spin vortices vs pion strings 14.1.4 Casimir force between spin and mass vortices and composite defect	165 165 165 165 166
14	Vortices in ³ He-B 14.1 Topology of ³ He-B defects 14.1.1 Fundamental homotopy group for ³ He-B defects 14.1.2 Mass vortex vs axion string 14.1.3 Spin vortices vs pion strings 14.1.4 Casimir force between spin and mass vortices and composite defect 14.1.5 Spin vortex as string terminating soliton	$165 \\ 165 \\ 165 \\ 165 \\ 166 \\ 166 \\ 167 \\ 168 $

30	Top	ological defects as source of non-trivial metric	397
	30.1	Surface of infinite red shift	397
		30.1.1 Walls with degenerate metric	397
		30.1.2 Vierbein wall in ³ He-A film	398
		30.1.3 Surface of infinite red shift	399
		30.1.4 Fermions across static vierbein wall	401
		30.1.5 Communication across the wall via non-linear	
		superluminal dispersion	403
	30.2	Conical space and antigravitating string	404
31	Vac	uum under rotation and spinning strings	406
	31.1	Sagnac effect using superfluids	406
		31.1.1 Sagnac effect	406
		31.1.2 Superfluid gyroscope under rotation. Macroscopic	
		coherent Sagnac effect	407
	31.2	Vortex, spinning string and Lense–Thirring effect	408
		31.2.1 Vortex as vierbein defect	408
		31.2.2 Lense–Thirring effect	409
		31.2.3 Spinning string	410
		31.2.4 Asymmetry in propagation of light	411
		31.2.5 Vortex as gravimagnetic flux tube	412
	31.3	Gravitational Aharonov–Bohm effect and Iordanskii	
		force on a vortex	412
		31.3.1 Symmetric scattering from the vortex	413
		31.3.2 Asymmetric scattering from the vortex	414
		31.3.3 Classical derivation of asymmetric cross-section	414
		31.3.4 Iordanskii force on spinning string	415
	31.4	Quantum friction in rotating vacuum	416
		31.4.1 Zel'dovich–Starobinsky effect	416

30	Top	ological defects as source of non-trivial metric	397
	30.1	Surface of infinite red shift	397
		30.1.1 Walls with degenerate metric	397
		30.1.2 Vierbein wall in ³ He-A film	398
		30.1.3 Surface of infinite red shift	399
		30.1.4 Fermions across static vierbein wall	401
		30.1.5 Communication across the wall via non-linear	
		superluminal dispersion	403
	30.2	Conical space and antigravitating string	404
31	Vac	uum under rotation and spinning strings	406
	31.1	Sagnac effect using superfluids	406
		31.1.1 Sagnac effect	406
		31.1.2 Superfluid gyroscope under rotation. Macroscopic	
		coherent Sagnac effect	407
	31.2	Vortex, spinning string and Lense–Thirring effect	408
		31.2.1 Vortex as vierbein defect	408
		31.2.2 Lense–Thirring effect	409
		31.2.3 Spinning string	410
		31.2.4 Asymmetry in propagation of light	411
		31.2.5 Vortex as gravimagnetic flux tube	412
	31.3	Gravitational Aharonov–Bohm effect and Iordanskii	
		force on a vortex	412
		31.3.1 Symmetric scattering from the vortex	413
		31.3.2 Asymmetric scattering from the vortex	414
		31.3.3 Classical derivation of asymmetric cross-section	414
		31.3.4 Iordanskii force on spinning string	415
	31.4	Quantum friction in rotating vacuum	416
		31.4.1 Zel'dovich–Starobinsky effect	416

32	Analogs of event horizon	424
	32.1 Event horizons in vierbein wall and Hawking radiation	424
	32.1.1 From infinite red shift to horizons	424
	32.1.2 Vacuum in the presence of horizon	427
	32.1.3 Dissipation due to horizon	430
	32.1.4 Horizons in a tube and extremal black hole	431
	32.2 Painlevé–Gullstrand metric in superfluids	434
	32.2.1 Radial flow with event horizon	434
	32.2.2 Ingoing particles and initial vacuum	436
	32.2.3 Outgoing particle and gravitational red shift	438
	32.2.4 Horizon as the window to Planckian physics	440
	32.2.5 Hawking radiation	440
	32.2.6 Preferred reference frames: frame for Planckian	
	physics and absolute spacetime	441
	32.2.7 Schwarzschild metric in effective gravity	443
	32.2.8 Discrete symmetries of black hole	445
	32.3 Horizon and singularity on AB-brane	446
	32.3.1 Effective metric for modes living on the AB-	
	brane	447
	32.3.2 Horizon and singularity	449
	32.3.3 Brane instability beyond the horizon	450
	32.4 From 'acoustic' black hole to 'real' black hole	452
	32.4.1 Black-hole instability beyond the horizon	452
	32.4.2 Modified Dirac equation for fermions	454
	32.4.3 Fermi surface for Standard Model fermions in-	
	side horizon	456
	32.4.4 Thermodynamics of 'black-hole matter'	458
	32.4.5 Gravitational bag	459

Reissner - Nordstroem black hole

$$ds^{2} = -\frac{(r - r_{+})(r - r_{-})}{r^{2}}dt^{2} + \frac{r^{2}}{(r - r_{+})(r - r_{-})}dr^{2} + r^{2}d\Omega ,$$
$$r_{+}r_{-} = \frac{Q^{2}}{G^{2}} , r_{+} + r_{-} = \frac{2\mathcal{M}}{G} .$$

In the laboratory frame the dynamics of quasiparticles, propagating in this velocity field, is given by the line element provided by the effective metric in eqn (5.2):

$$ds^{2} = -\left(1 - \frac{v_{\rm s}^{2}(r)}{c^{2}}\right)dt^{2} - 2\frac{v_{\rm s}(r)}{c^{2}}drdt + \frac{1}{c^{2}}(dr^{2} + r^{2}d\Omega^{2}).$$

If the 'superflow' is inward, and the velocity profile is $v_{\rm s}(r) = -c(r_{\rm h}/r)^{1/2}$, this equation corresponds to the line element for the black hole obtained by Painlevé (1921) and Gullstrand (1922). Among the other metrics used for the black hole black hole

PAINLEVÉ–GULLSTRAND METRIC IN SUPERFLUIDS

Superfluids can also simulate the rotating black hole. An example is shown in Fig. 32.8. The types of the condensed matter black holes, ergoregions and surfaces of the infinite red shift can now be classified in terms of the symmetry of the superfluid velocity field \mathbf{v}_s . There are three important elements of discrete symmetries which form the group $Z_2 \times Z_2$. One of them is time reversal symmetries.

FIG. 32.8. Whirlpool simulating the rotating black hole. The radial velocity of the flow is directed toward the center of the black hole.

A relation between solutions of Einstein's and Navier – Stokes equations. Black Holes and viscous incompressible hydrodynamics. Conformal hydrodynamics and all that...

Fluid dynamics of R-charged black holes

Johanna Erdmenger^{1,*}, Michael Haack^{2,†}, Matthias Kaminski^{1,‡}, Amos Yarom^{2,§}

¹Max Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany

²Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Department für Physik, Theresienstrasse 37, 80333 München, Germany

We construct electrically charged AdS_5 black hole solutions whose charge, mass and boost-parameters vary slowly with the space-time coordinates. From the perspective of the dual theory, these are equivalent to hydrodynamic configurations with varying chemical potential, temperature and velocity fields. We compute the boundary theory transport coefficients associated with a derivative expansion of the energy momentum tensor and Rcharge current up to second order. In particular, for the current we find a first order transport coefficient associated with the vorticity of the fluid.

The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity

Sayantani Bhattacharyya^a, Shiraz Minwalla ^{a†}and Spenta R. Wadia^{a‡}

^aDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Rd, Mumbai 400005, India

ABSTRACT: We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

$\mathrm{TIFR}/\mathrm{TH}/\mathrm{08-40}$

FROM NAVIER-STOKES TO EINSTEIN

Irene Bredberg, Cynthia Keeler, Vyacheslav Lysov and Andrew Strominger

Center for the Fundamental Laws of Nature, Harvard University Cambridge, MA, 02138

We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p + 1 dimensions, there is a uniquely associated "dual" solution of the vacuum Einstein equations in p + 2 dimensions. The dual geometry has an intrinsically flat timelike boundary segment Σ_c whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a "near-horizon" limit in which Σ_c becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. For p = 2, we show that the full dual geometry is algebraically special Petrov type II. The construction is a mathematically precise realization of suggestions of a holographic duality relating fluids and horizons which began with the membrane paradigm in the 70's and resurfaced recently in studies of the AdS/CFT correspondence.

arXiv:1101.2451

Unity of UNIVERSE and theories of EVERYTHING

What is Life from the cosmological point of view?

a temporal END