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Many of the original research and survey monographs in pure and
applied mathematics published by Birkhauser in recent decades have
been groundbreaking and have come to be regarded as foundational
to the subject. Through the MBC Series, a select number of these
modern classics, entirely uncorrected, are being rereleased in
paperback (and as eBooks) to ensure that these treasures remain
accessible to new generations of students, scholars, and researchers.
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1. The KdV equation was written in Chapter 7 (egs.(7.1) and (7.2)). Usually
one writes it for the dimensionless function # = 3y/4h depending on the dimen-
sionless time and space variables T = V6ot /hand X = V6x /.

a4+ w4+ ut+u"y =0.

Here the dot denotes the derivative with respect to “time” T and the prime de-
notes the “space” derivative (with respect to X). The one-soliton solution of this
equation is

u = 6k/ cosh’[k(X — VT)],
where k is an arbitrary real number and V = 1 + 4k? (compare this to egs. (7.1)

and (7.2)). By replacing in the KdV equation #* with #3, we get the so-called
“modified” KdV equation. Its one-soliton solution is

u=~2k/cosh[k(X — VT)], V=1+k>
Finally, let us write a typical equation describing nonlinear diffusion
u’ — it = uu— D{u —a)
and its solitary wave solution

—1
L]

" = [1 + exp[(X — VT)NE]] V = (1-2a)/V2



The sine-Gordon equation was written in Chapter 6 (eq. (6.11)). One usually
writes 1t for the function u = 7 + ¢ of the dimensionless variables T = wyt and
X = wox/vg:

u’ — it =sinu.

Its one-soliton solution was also written in Chapter 6:

u = 4arctanexp[8(X — VT)], B=1/v1-VZ

Two solitons are described by the solution
u = 4 arctan[V sinh(Bx)/ tanh(8V T)].
The soliton-antisoliton solution is
u = 4arctan[V ™! sinh(8V T)/ cosh(Bx)],
and the breather solution is

u = 4 arctan[a sin(bT) /b cosh(aX)], a*+ b* = 1.



Typical solitons in discrete lattices are the solitons in the nonlinear Toda lat-
tice. The system of equations describing movements of “atoms” in the Toda lattice
is the following:

iy = eXxpl{lly+1 — Up) — eXpliy — Up—1),

where u, are the discrete (dimensionless) coordinates of the atoms. The solitonic
solution of the Toda system is given by the formulae

Up = Sp — Sp+1» Sp = In{1+ exp[2(an + T sinha)]],

where & 1s an arbitrary real number. Note that the discretized KdV equation has
the form
Uy = eXpPUpt+1 — XPlUn—1,

while the continuum limit of the Toda equations is the Boussinesq equation
i = (u + I5{{2 + uu)u,

which sometimes is called the nonlinear string equation.



Solitons with the PENDULUM
and other related physical systems
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Figure 4.1 The mathematical pendulum Phase portrait of the pendulum




The “Soliton” Solution of the Pendulum Equation

To better understand the behavior of the soliton solution, let us directly express
¢ in terms of ¢ by using the inverse to the tangent function

¢ = m — 4arctan(e” ™). (4.9)

A Portrait of the Pendulum

Figure 4.15 Bending shapes of a wire



Motions of the Pendulum and the “Tame” Soliton
Duality between the pendulum and wire shapes

Both are described by the same graphs

¢ grows from —m to +m. Its dependence on s is described by the formula (4.9)
after substituting s for ¢. The parameter wy depends on the applied force F. If the
wire is infinitely long and ideally elastic, the loop can freely move along the wire.
This loop is one of the simplest solitons. We may call 1t the “tame” soliton.

Note that all bending shapes of the ideal infinitely long wire ¢ (5) describe mo-
tions of the pendulum. This remarkable analogy between seemingly very different
phenomena was discovered”’ by the German physicist Gustav Kirchhoff (1824-
1887) and is called “Kirchhoff’s analogy.” In fact he discovered a much more
general analogy between the states of deformed elastic bodies and some motions
of rigid bodies. Unfortunately, this beautiful analogy is practically forgotten. We
will say more about it when we turn to Frenkel's soliton.



(a)
Figure 6.8 Euler’s soliton (a) and antisoliton (b)
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Frenkel - Kontorova soliton
(“sine — Gordon” soliton)

my, = — fosin(2ay,/a) + k(yn+1 — 2¥n + yn—1). (6.1)

Equation (6.1) is the main equation of the Frenkel—Kontorova model. We will
now find the solution of this equation, which describes one moving dislocation.

With the notation 2ny,(t)/a = Y (1, x), X = na

in the continuum limit a —> 0, we have the nonlinear equation

Y = viy” — wisiny



A model of dislocation
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Figure 8.4 Electric scheme of a chain of the Josephson junctions

I =1I,sing, V=(®/27¢)p, ¢+ (RC) P+ j.sing = j,

1

Figure 8.5 Soliton in a long Josephson junction
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The Josephson map and Chaos

AT Filippov and Yu.S.Gal'pern, Phys. Lett. A 172 (1993),471

magnetic flux distribution gév(:zr)' in a homogeneous lattice may be described by the

equation ,
d
Zr0(r) = bl = ) sin o) (1)

Then, the flux distribution at the n — th interval z, < & < Tp41 18 expressed as
1 ,
On(T) = @y + bp(r — 7)) + E’}(T —Ta)%y (2)

Assuming the lattice to be periodic (zn,41 — #, = A), we can determine the coeffi-

cients a, and b, by solving the equation

a n

- 1.,,
(lp—1 + b-n—l -+ §'T=

Z_;’n—l + ﬁSiIl ay + .-‘}, (3)

bn



A detailed study of JM
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Y. Nomura, Y.H. Ichikawa and A.T. Filippov

Stochasticity in the Josephson Map
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A simple model of Chaos

Xnt1 =b—x
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Phase space portrait of the Josephson map for the stochastic parameters ; a) K =
1.3,b) K =2.1 and ¢) K = 3.3. The number attached to cach frame stands for the

value the bias I'.
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In the present studies, we have shown that the external uniform bias imposed on
the system described by the standard map gives rise to rich manifestation of the

nonlinear behavior, with the sensitive dependence on the control parameters.



Vortices In water, superflud liquids, in Universe...

From MACRO to MICRO and back

A relation between solutions of Einstein’s equations
and equations of Navier — Stokes, etc...

Unity of UNIVERSE and
theories of EVERY THING
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Figure 7.14 Collision of two vortex pairs
according to McWilltams and Zabusky
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Figure 3.7 Kelvin’s idea of vortex atoms. Differently knotted
vortex rings represent different atoms
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Figure 8.1 Superfluid vortex and its flow environment
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Reissner - Nordstroem black hole

. - 2.2
ds? = — (r r+)‘(r ") di? + i dr® - r2dQ) :
(r=re)(r=r-)
Q> 2M
rar_ = — ,rp +r_ = —.
G2 G

N the laboratory tframe the dynamics ot quasiparticles, propagating in this velocity
field, is given by the line element provided by the effective metric in eqn (5.2):

2¢(, .

‘ v (r ‘ V(7 1 ‘ 5 o
ds® = — (1 — bg ) dt® — 2 b(‘ )d-rdt + —(dr* +r2dQ?).
2 2 2

If the ‘superflow’ is inward. and the velocity profile is v (r) = —c(ry, /r)t/2.

this equation corresponds to the line element for the black hole obtained by
Painlevé (1921) and Gullstrand (1922). Among the other metrics used for the

black hole



PAINLEVE -GULLSTRAND METRIC IN SUPERFLUIDS

ds?*=—di* (c*—v*) — 2vdrdt +dr*+ r*dQ*

i A
goo Eor Painlevé-Gullstrand metric
effective metric in superfluids of black hole
W)=, (r) V= 26M _ 2y
= _n
Kinetic energy of superflow = potential of gravitational field

vs :vLandau

superfluid

Information from | oriz0n at 200=0
interior region or v(r,) =c
cannot be transferred by
quasiparticles / matter

horizon at v (r,) =c
¢ — maximum attainable
speed of quasiparticles



Superfluids can also simulate the rotating black hole. An example is shown in
Fig. 32.8. The types of the condensed matter black holes. ergoregions and sur-
faces of the infinite red shift can now be classified in terms of the symmetry of
the superfluid velocity field vg. There are three important elements of discrete
symmetries which form the group Zs x Z5. One of them is time reversal symime-

Fia. 32.8. Whirlpool simulating the rotating black hole. The radial velocity of
the flow is directed toward the center of the black hole.






A relation between solutions of Einstein’s
and Navier — Stokes equations.
Black Holes and viscous
Incompressible hydrodynamics.
Conformal hydrodynamics and all that...



Fluid dynamics of R-charged black holes

Johanna Erdmenger’*, Michael Haack®!, Matthias Kaminski®*,
Amos Yarom?$

'Max Planck-Institut fiir Physik (Werner-Heisenberg-Institut), Fohringer Ring 6,

80805 Miinchen, Germany

2Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitat,

Department fiir Physik, Theresienstrasse 37, 80333 Miinchen, Germany

We construct electrically charged AdSy; black hole solutions whose charge, mass and
boost-parameters vary slowly with the space-time coordinates. From the perspective of
the dual theorv, these are equivalent to hvdrodyvnamic configurations with varving chemical
potential, temperature and wvelocity fields. We compute the boundary theory transport
coefficients associated with a derivative expansion of the energy momentum tensor and F-
charge current up to second order. In particular, for the current we find a first order transport
coeflicient associated with the vorticity of the fluid.

August 2008



The Incompressible Non-Relativistic Navier-Stokes
Equation from Gravity

Sayantani Bhattacharyya®’ Shiraz Minwalla “'and Spenta R. Wadia®?

“Department of Theoretical Physics, Tata Institute of Fundamental Research,
Homi Bhabha Rd. Mumbai 400005, India

ABSTRACT: We note that the equations of relativistic hydrodynamics reduce to the incompressible
Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of
the underlying relativistic system turn into a forcing function identical to the action of a background
electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symme-
tries of the parent relativistic theory descend to ‘accelerated boost’ symmetries of the Navier-Stokes
equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit
to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution
of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we
also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate
that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual
transition to turbulence.
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FROM NAVIER-STOKES TO EINSTEIN

Irene Bredberg, Cynthia Keeler, Vyacheslav Lysov and Andrew Strominger

Center for the Fundamental Lows of Nature, Harvard University
Cambridge, MA, 02138

We show by explicit construction that for every solution of the incompressible Navier-Stokes equation
in p+ 1 dimensions, there is a uniquely associated “dual” solution of the vacuum Einstein equations
in p+ 2 dimensions. The dual geometry has an intrinsically flat timelike boundary segment Y. whose
extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a *near-horizon”
limit in which ¥, becomes highly accelerated. The near-horizon expansion in gravity is shown to be
mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation
reduces to the incompressible Navier-Stokes equation. For p = 2, we show that the full dual geometry is
algebraically special Petrov type II. The construction is a mathematically precise realization of suggestions
of a holographic duality relating fluids and horizons which began with the membrane paradigm in the

70’s and resurfaced recently in studies of the AdS/CFT correspondence.

arXiv:1101.2451



Unity of UNIVERSE
and theories of EVERYTHING

What is Life from the cosmological point of view?
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