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�

New coupling constant in the � h scheme

The Z–� transition� in the SM does not vanish at zero squared
momentum transfer. Although this fact does not pose any serious
problem, not even for the renormalization of the electric charge, it is
preferable to use an alternative strategy. Let’s introduce the new
SU � 2 � coupling constant �g, the new mixing angle �� and the new W
mass �M in the

�
h scheme:

g � �g � 1 ����� g ����� � sin ��"! cos �� �#�g
v � 2 �M ! �g $%� �gMH

!
2 �M 2 & 2 � � h � 1

2M2
H

(1)
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'

note: g sin
�(!

cos
� �)�g sin ��"! cos �� , where � �*� 1 �g2 ��� 2 �g4 �,+-+-+ is a

new parameter. yet to be specified. This change of parameters entails
new �A/ and �Z/ fields related to B3/ and B0/ by

�Z 0/�A/ � cos �� � sin ��
sin �� cos �� B3/

B0/ 0 (2)

The replacement g 12�g � 1 ���3� introduces in the SM Lagrangian
several terms containing the new parameter � . Let us take a close look
at these ‘ � terms’ in each sector of the SM.
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4

5 The pure Yang–Mills Lagrangian

6
YM ��� 1

4
F a/�7 F a/37 � 1

4
F 0/�7 F 0/�798 (3)

with F a/37 ��:;/ Ba7 �<:;7 Ba/ � g = abcBb/ Bc7 and F 0/�7 �>:�/ B07 �?:�7 B0/ ,
contains the following new � terms when we replace g by �g � 1 ����� :

@BA
YM CED i Fg GHFc IKJML FZ0NPO W QN W RL D W QL W RN�S D FZ0L O W QN JTL W RN D W RN JML W QNUSV FZ0NWO W QL J L W RN D W RL J L W QN�SMX D i Fg GYFs IKJ L FA N O W QN W RL D W QL W RN�S

D FA L O W QN JTL W RN D W RN JML W QN S V FA N O W QL JML W RN D W RL JTL W QN STXV Fg2 G[Z 2 V G]\U^ 1
2
O W QN W RL W QN W RL D W QN W RN W QL W RL SV Fc2 O FZ0N W QN FZ0L W RL D FZ0N FZ0N W QL W RL S V Fs2 O FA N W QN FA L W RL D FA N FA N W QL W RL SV Fs Fc O FA N FZ0L Z W QN W RL V W QL W RN \ D 2 FA N FZ0N W QL W RL S[_a` (4)
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b

where �s � sin �� and �c � cos �� . As these terms are of cd�-�g3 � or cd�-�g4 � ,
they do not contribute to the calculation of self-energies at the
one-loop level, but they do beyond it.
5 The scalar Lagrangian

6
S contains several new � terms when we

employ the relation g �*�g � 1 ����� and the
�

h scheme of eqs. (1).
Actually, the last two equations in (1) are not needed here, as the
interaction part of the scalar Lagrangian does not induce � terms.
They can be arranged in the following three classes

e 6
S f h � e 6 g nf h 2 i

S f h � e 6 g nf h 3 i
S f h � e 6 g nf h 4 i

S f h 8 (5)
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j

according to the number of fields (nf ) appearing in each interaction
term (indicated by the superscript in parentheses. Note that this
superscript does not indicate, in general, the order in �g). The explicit
expressions, up to terms of cd� �g4 � , are@BA9k nf l 2 m

S n h C FM Ga^ D 1

2
FM Fs2 G FA N FA N D 1

2
FM O 2 V GHFc2 S FZ0N FZ0N

D FM FsFc O 1 V GHFc2 S FA N FZ0N V J N-o 0 O Fs FA N V Fc FZ0NpS
D FM Z 2 V G]\ W QN W RN V W RN J N o Q V W QN J N o R _ ` (6)

@BA k nf l 3 m
S n h C Fg G ^ D FMH q FZ0N FZ0N V FsFc FA N FZ0N V 2W QN W RN�r

V 1

2
O Fs FA N V Fc FZ0N S�O H J N o 0 D o 0 J N H

V
i o Q-J N o R D i o RWJ N o Q S

V
i O o R W QN D o Q W RN S qMFs FM FA N D ZsFs2 t Fc \ FM FZ0N V 1

2
J N o 0 r

V 1

2
W RN J N-o Q O H V i o 0 S V 1

2
W QN J NUo R O H D i o 0 S D 1

2
J N H O o Q W RN V o R W QN Su_9` (7)

@BA k nf l 4 m
S n h C Fg2

2
G3v D 1

2
O H2 V o 2

0 S q FZ0N FZ0N V FsFc FA N FZ0N V 2W QN W RN rV o Q o R O D 2 Fs2 FA N FA N V Z 1 D 2 Fc2 \ FZ0N FZ0N V ZKFs t Fc D 4 Fs Fc \ FA N FZ0NTS
D 2W QN W RN o Q o R V O Fs FA N D ZsFs2 t Fc \ FZ0NpS�w
w ^ o 0 O o Q W RN V o R W QNUS D iH O o Q W RN D o R W QN3S[_yxPz (8)
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{

The interaction part of the scalar Lagrangian,6 I
S ��� & 2K | K �}�y$ ! 2 �u� K | K � 2, does not induce � terms; these are only

originated by~ the term involving the covariant derivatives,� � D/ K ��|�� D/ K � . On the other hand, as M
!
g � �M ! �g, the

�
h terms

induced by
6 I

S are expressed in terms of the ratio of the barred
parameters �M ! �g.
5 We choose the gauge-fixing Lagrangian

6
gf with the following gauge

functions:

�
A ��� 1�

A

: / �A/ 8 �
Z ��� 1�

Z

: / �Z 0/ � � Z

�M
�c � 0 8 ��� ��� 1�

W

: / W �
/ � � W

�M �
�
0

(9)
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�

gaug e fixing�
This R� gauge � -independent

6
gf cancels the zeroth order (in �g)

gauge–scalar mixing terms introduced by
6

S, but not those
proportional to � . Had one chosen gauge-fixing functions eqs. (9) with
unbarred quantities, all the gauge–scalar mixing terms of

6
S would be

canceled, including those proportional to � , but additional new �
vertices would also be introduced.
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�

5 New � terms are also originated in the Faddeev–Popov ghost sector.
Studying the gauge transformations of the gauge-fixing functions

�
A,
�

Z

and
� �

defined in eqs. (9), the additional new � terms of the FP
Lagrangian in the

�
h scheme are:

e 6
FP f h � e 6 g nf h 2 i

FP f h � e 6 g nf h 3 i
FP f h 8 (10)

where the two-field terms are,

e 6 g nf h 2 i
FP f h ���%� �M2 �

Z
�XZ XZ � �s

�c XA � � W
�X � X ��� �X � X � 8 (11)
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�

and the three-field terms are

e 6 g nf h 3 i
FP f h � �B�g i �cW �/ �y:;/ �XZ

!��
Z � X �����y:;/ �X � !�� W � XZ (12)

� i �sW �/ �y: / �XA

!��
A � X � ���y: / �X � !�� W � XA

� i �cW �/ �y:�/ �X � !�� W � XZ ���y:�/ �XZ

!��
Z � X �

� i �sW �/ �y:;/ �X � !�� W � XA ���y:�/ �XA

!��
A � X �

� i �c �Z 0/ �y: / �X � !�� W � X � ���y: / �X � !�� W � X �
� i �s �A/ �y:;/ �X � !�� W � X �����y:;/ �X � !�� W � X �
� 1

2
�

W
�M i � 0 �X � X � � �X � X � � H �X � X � � �X � X �

� 1
2 �c
�

Z
�M �XZ iX � � ��� iX � � ���<�sHXA ���cHXZ

� i
2
�

W
�M �X � � � ���cXZ ���sXA ��� �X � � � �y�cXZ ���sXA � 0
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�

FP ghost fields

The bars over the FP ghost fields indicate conjugation. Obviously, the
new FP fields XA and XZ should also be denoted with the bar for the
field rediagonalization, just like the new fields �A/ and �Z/ . However, this
notation would be too messy and we will leave this point understood.

Note that the FP ghost – gauge boson vertices are simply the usual
ones with g replaced by �g � . This is not the case, in general, for the FP
ghost – scalar terms.
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5 Finally, the fermionic sector. The fermion – gauge boson Lagrangian,

6
fG � i

2 � 2
g W �/ �u �a/�� 1 ��� 5 � d � W �/ �d ��/�� 1 ��� 5 � u

� i
2c

g Z/ �f �a/ I3 � 2Qf s
2 � I3 � 5 f � i gs Qf A/ �f �a/ f 8 (13)

(where I3 ��� 1
!
2 is the weak isospin third component of the fermion f ,

and Qf its charge in units of �e � ) becomes, under the replacement
g 1��g � 1 ����� and the

�
, A/ and Z/ redefinitions,
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�

Fermions

6
fG � i

2 � 2
�g � 1 � ��� W �/ �u ��/¡� 1 �¢� 5 � d � W �/ �d �a/�� 1 ��� 5 � u

� i
2 �c �g �Z 0/ �f ��/ I3 � 2Qf �s2 � I3 � 5 f � i �g �s Qf �A/ �f �a/ f

� i
2
�g � �s �A/ �£�c �Z 0/ I3 �f � / � 1 ��� 5 � f 0 (14)

The new neutral and charged current � vertices are immediately
recognizable. The CKM matrix has been set to unity.
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¤

The fermion–scalar Lagrangian does not induce � terms. Indeed, the
Yukawa couplings ¥ and

�
in

6
fS ���¦¥ �§ LKuR � � �§ LK cdR � h.c. (15)

(where K c � i ¨ 2K © is the conjugate Higgs doublet) are set by¥ v
! � 2 � mu and

�
v
! � 2 �>� md . As v � 2 �M ! �g, it is ¥ª�)�gmu

! � 2 �M
and

� ���«�gmd
! � 2 �M, and no � appears in Eq.(15).
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Yang–Mills

The Feynman rules for all these new � vertices are computed, up to
terms of cd� �g4 � . Those corresponding to the pure Yang–Mills
Lagrangian [Eq.(4)] are not listed, as they are identical to the usual
Yang–Mills ones, except for the replacement g 12�g � in the three-leg
vertices, and g2 12�g2 ��� 2 ����� in the four-leg ones. In Appendix C, all
bars over the various symbols (indicating rediagonalization) have been
dropped, except over �g.
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New coupling constant in the � t scheme

The
�

t scheme equations corresponding to Eq.(1) are the following

g � �g � 1 ���3� g � ��� � sin ��"! cos �� ���g
v � 2 �M � � 1 � � t � ! �g $®� �gM �

H

!
2 �M � 2 & 2 ��� 1

2 � M �H � 2 0
(16)

(Note: g sin
�B!

cos
� �¯�g sin ��B! cos �� .) The analysis of the � terms

presented in the previous section for the
�

h scheme can be repeated
for the

�
t scheme using Eq.(16) instead of Eq.(1). The new fields �A/

and �Z/ are related to B3/ and B0/ by Eq.(2). Thus, we obtain the
following results:
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5 The replacement g 1 �g � 1 ���3� in the pure Yang–Mills sector
introduces new � vertices collected in

e 6
YM, which does not depend

on the parameters of the
�

h f t schemes.
e 6

YM has already been given
in Eq.(4).
5 The new � terms introduced in

6
S by eqs. (16) can be arranged once

again in the three classes

e 6
S f t � e 6 g nf h 2 i

S f t � e 6 g nf h 3 i
S f t � e 6 g nf h 4 i

S f t 8 (17)

according to the number of fields appearing in the � terms. The explicit
expression for

e 6±g 2 i
S f t is, up to terms of cd�-�g4 � ,
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²

e 6 g nf h 2 i
S f t � �M � � � 1

2
�M � �s2 � �A/ �A/³� 1

2
�M � 2 ��� �c2 � 4

�
t �Z 0/ �Z 0/ (18)

� �M � �s�c 1 ��� �c2 � 2
�

t �A/ �Z 0/ �,:;/ � 0 �s �A/´� �c �Z 0/ � 1 � � t �
� �M � � 2 ���µ� 4

�
t � W �/ W �/ � W �/ :�/ � � � W �/ :;/ � � � 1 � � t

with �s � sin �� and �c � cos �� , while, up to the same cd�-�g4 � ,
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¶

more fields e 6 g nf h 3 f 4 i
S f t � e 6 g nf h 3 f 4 i

S f h �M 1 �M � (19)

[
e 6 g nf h 3 i

S f h and
e 6 g nf h 4 i

S f h are given in eqs. (7) and (8)]. The subscripts t
and h indicate the

�
t and

�
h schemes. Note the presence of

�
t factors

in the new � terms of Eq.(18). We will comment on this in sec. 23.
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5 Our recipe for gauge-fixing is the same as in the previous sections:
we choose the R� gauge

6
gf to cancel the zeroth order (in �g)

gauge–scalar mixing terms introduced by
6

S, but not those of higher
orders (see discussions in 2). Here, this prescription is realized by

6
gf

with

�
A ��� 1�

A

:;/ �A/ 8 �
Z ��� 1�

Z

:;/ �Z 0/ � � Z

�M ��c � 0 8 � � ��� 1�
W

:�/ W
�
/ � � W

�M � �
� 8

(20)

clearly � -independent.
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The new � terms of the FP ghost Lagrangian in the
�

t scheme are:

e 6
FP f t � e 6 g nf h 2 i

FP f t � e 6±g nf h 3 i
FP f t 8 (21)

where the two-field terms are

e 6±g nf h 2 i
FP f t ���E� 1 � � t �¹� �M � 2 �

Z
�XZ XZ � �s

�c XA � � W
�X � X ��� �X � X � 8

(22)

and the three-field terms are the same as in the
�

h scheme, with �M
replaced by �M � : e 6±g nf h 3 i

FP f t � e 6 g nf h 3 i
FP f h � �M 1 �M � � [Eq.(12)]. Like in the

scalar sector, the � and
�

t factors are entangled; see sec. 23 for a
comment.
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5 We conclude this analysis with the fermionic sector. As in the
Yang–Mills case, the fermion – gauge boson Lagrangian

6
fG does not

depend on the» parameters of the
�

h or
�

t schemes. Its expression in
terms of the new coupling constant �g contains new � terms and is
given in Eq.(14). The neutral sector rediagonalization induces no �
terms in the fermion–scalar Lagrangian

6
fS [Eq.(15)], which contains,

however, the
�

t vertices (the ratio M � ! g is now replaced by the
identical ratio �M � ! �g).

The Feynman rules for all � vertices are listed in Appendix C, up to
terms of cd� �g4 � . All primes and bars over A/ , Z/ , M, MH and

�
have

been dropped (but not over �g). As we mentioned at the end of the
previous section, the � vertices of the pure Yang–Mills sector need not
be listed.
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The ½ – � t mixing

A comment on¾ the presence of
�

t factors in the new � vertices is now
appropriate. Consider the scalar Lagrangian

6
S. As we already

pointed out in sec. 2, the interaction part of
6

S,6 I
S ��� & 2K | K �¢�y$ ! 2 �u� K | K � 2, does not induce � terms. On the other

hand,
6 I

S gives rise to
�

t terms: as M � ! g � �M � ! �g, these
�

t terms are
simply expressed in terms of �M � ! �g instead of M � ! g.

The derivative part of the scalar Lagrangian, � � D/ K ��|¿� D/ K � , induces
both � and

�
t vertices, plus mixed ones which we still call � vertices

(see the
�

t factors in the two-leg � terms of
e 6 g nf h 2 i

S f t ).
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It works like this: first, we replace g 12�g � 1 ���3� and g � 1Á�«�g �p�s ! �c � in� � D/ K � | � D/ K � , splitting the result in two classes of terms, both written
in terms of �g, with or without � .
Then we substitute in both classes v 1 2 �M � � 1 � � t � ! �g: the class
containing � is, up to terms of cd�-�g4 � , e 6 S f t [Eq.(17)], and includes
also

�
t factors, while the class free of � has the same

�
t vertices as

Eq.(?? ) with g,
�
, M � , A/ and Z/ replaced by �g, �� , �M � , �A/ and �Z 0/ . The

upshot is that you need both the results for the new � vertices derived
in the previous section 16 (containing

�
t ), and the expressions for the�

t terms.

The � and
�

t terms of the Faddeev–Popov sector are intertwined just
as in the case of the scalar Lagrangian.
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Summar y of the special ver tices

The upshot of these first sections of the paper lies in the Appendices.
There you find� the full set of Standard Model � [up to cd�-�g4 � ] and

�
h f t

special vertices in the R� gauges. All primes and bars over A/ , Z/ , M,
MH and

�
have been dropped, but not over �g, the SU � 2 � coupling

constant of the rediagonalized neutral sector. Just pick your tadpole
scheme,

�
h or

�
t , and compute your Feynman diagrams including the�

h f t vertices of Appendix A or B, respectively.

If you prefer to work with the rediagonalized neutral sector, you should
simply replace g by �g in the

�
h f t vertices, and add to them the � ones

of Appendix C. There, � vertices are listed for the
�

t scheme (note that� and
�

t terms are intertwined — see sec. 23); just set
�

t � 0 if you
are using the

�
h scheme instead.
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Finally, the following table graphically summarizes which of the SM
sectors provide each type of special vertex. Note the overlap of � and�

t terms in the scalar and Faddeev–Popov sectors.

SECTOR
�

h
�

t �
Scalar: � D/ K � | � D/ K � 5 5
Scalar:

& 2K | K �?�y$ ! 2 �u� K | K � 2 5 5
Yang–Mills 5
Gauge-Fixing

Faddeev–Popov 5 5
Fermion – gauge boson 5
Fermion – Higgs 5
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WSTI for two-loop gaug e boson self-ener gies

WSTI
The purpose of this section is to discuss in detail the structure of the
(doubly-contracted) Ward-Slavnov-Taylor identities (WSTI) for the
two-loop gauge boson self-energies in the Standard Model, focusing in
particular on the role played by the reducible diagrams. This analysis
is performed in the ’t Hooft–Feynman gauge.
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Definitions and WST identities

Let Æ ij be the sum of all diagrams (both one-particle reducible and
irreducible) with two external boson fields, i and j , to all orders in
perturbation theory (as usual, the external Born propagators are not to
be included in the expression for Æ ij )

Æ ij � Ç
n h 1

g2n

� 16È 2 � n Æ
g n i
ij 0 (23)

In the subscripts of the quantities Æ g n iij we will also explicitly indicate,
when necessary, the appropriate Lorentz indices with Greek letters. At
each order in the perturbative expansion it is convenient to make
explicit the tensor structure of these functions by employing the
following definitions:
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Æ g n i/�7 f VV � D
g n i
VV Ê /�7Ë� P

g n i
VV p/ p7 Æ g n i/ f VS ��� ip/ MS G

g n i
VS Æ g n iSS � R

g n i
SS 8

(24)
where the subscripts V and S indicate vector and scalar fields, MS is
the mass of the Nambu–Goldstone scalar S, and p is the incoming
momentum of the vector boson (note: Æ g n i/ f SV �>�%Æ g n i/ f VS). The quantities
Dij , Pij , Gij , and Rij depend only on the squared four-momentum and
are symmetric in i and j . Furthermore, D and R have the dimensions
of a mass squared, while G and P are dimensionless.
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The WST identities require that, at each perturbative order, the
gauge-boson self-energies

satisfy the equations

p/ p7ËÆ g n i/37 f AA � 0

p/ p7 Æ g n i/37 f AZ � ip/ M0 Æ g n i/ f A o o � 0

p/ p7±Æ g n i/�7 f ZZ � M2
0 Æ g n io o o o � 2 ip/ M0 Æ g n i/ f Z o o � 0

p/ p7±Æ g n i/37 f W W � M2 Æ g n ioyo � 2 ip/ M Æ g n i/ f W o � 0 8 (25)
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which imply the following relations among the form factors D, P, G,
and R

D
g n i
AA � p2 P

g n i
AA � 0 (26)

D
g n i
AZ � p2 P

g n i
AZ � M2

0 G
g n i
A o o � 0 (27)

p2 D
g n i
ZZ � p4 P

g n i
ZZ � M2

0 R
g n io o o o � � 2 M2

0 p2G
g n i
Z o o (28)

p2 D
g n i
WW � p4 P

g n i
WW � M2 R

g n ioÎo � � 2 M2 p2G
g n i
W o 0 (29)

The subscripts A, Z , W , � and � 0 clearly indicate the SM fields. We
have verified these WST Identities at the two-loop level (i.e. n � 2) with
our code GraphShot.
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WSTI at two loops: the role of reducib le diagrams

At any given order in the coupling constant expansion, the SM gauge
boson self-energies satisfy the WSTI (25). For n Ð 2, the quantities
Æ g n iij contain both one-particle irreducible (1PI) and reducible (1PR)

contributions. At cd� g4 � , the SM Æ g n iij functions contain the following
irreducible topologies:

eight two-loop topologies,

three one-loop topologies with a
�

t1 vertex,

four one-loop topologies with a � 1 vertex,

and one tree-level diagram with a two-leg cd� g4 � � t or � vertex .
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Reducible cd� g4 � graphs involve the product of two cd� g2 � ones:

two one-loop diagrams,

one one-loop diagram and a tree-level diagram with a cd� g2 �
two-leg vertex insertion,

or two tree-level diagrams, each with a cd� g2 � two-leg vertex
insertion.

There are also cd� g4 � topologies containing tadpoles but, as we
discussed in previous sections, their contributions add up to zero as a
consequence of our choice for

�
t .

In the following we analyze the structure of the cd� g4 � WSTI for photon,
Z , and W self-energies, as well as for the photon–Z mixing,
emphasizing the role played by the reducible diagrams.
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The photon self-ener gy

The contribution. of the 1PR diagrams to the photon self-energy atcd� g4 � is given, in the ’t Hooft–Feynman gauge, by (with obvious
notation)

Æ Z 2 \ R/�7 f AA � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/�7 f AA � 1

p2 � M2
0

ÕÆ Z 2 \ R/37 f AA 8 (30)

where

ÔÆ Z 2 \ R/�7 f AA � Æ g 1 i/�Ö f AA Æ g 1 iÖ"7 f AA

ÕÆ Z 2 \ R/37 f AA �×Æ g 1 i/3Ö f AZ Æ g 1 iÖ"7 f ZA ��Æ g 1 i/ f A o o Æ g 1 i7 f o oA 0
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It is interesting to consider separately the reducible diagrams that
involve an inter. mediate photon propagator ( ÔÆ Z 2 \ R/37 f AA) and those including
an intermediate Z or � 0 propagator (

ÕÆ Z 2 \ R/37 f AA). By employing the
definitions given in the previous subsection and eq. (26) with n � 1,
one verifies that ÔÆ 2R/�7 f AA obeys the photon WSTI by itself,

Theorem

p/ p7 ÔÆ Z 2 \ R/37 f AA � p2 D
g 1 i
AA � p2 P

g 1 i
AA

2 � 0 0 (31)
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This is not the case for
ÕÆ Z 2 \ R/�7 f AA, although most of its contributions cancel

when contracted by p/ p7 as a consequence of eq. (27) (n � 1),

p/ p7 ÕÆ Z 2 \ R/�7 f AA � p2 M2
0 p2 � M2

0 G
g 1 i
A o o 2

0 (32)

The only diagrams contributing to the A– � 0 mixing up to cd� g2 � are
those with a W– � or FP ghosts loop, and the tree-level diagram with a� insertion. Their contribution, in the ’tHooft–Feynman gauge, is

G
g 1 i
A o 0 � � 2ÈÓ� 4i sc 2B0 � p2 8 M 8 M �Ú� 16È 2 � 1 0 (33)

A direct calculation (e.g. with GraphShot) shows that this residual
contribution of the reducible diagrams to the cd� g4 � photon WSTI,
eq. (32), is exactly canceled by the contribution of the cd� g4 � irreducible
diagrams, which include two-loop diagrams as well as one-loop graphs
with a two-leg vertex insertion.
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The photon– Z mixing

We now consider the second of eqs. (25) for n � 2. Reducible
diagrams contribute to both A–Z and A– � 0 transitions. Following the
example of Eq.(30), we divide these contributions in two classes: the
diagrams that include an intermediate photon propagator and those
mediated by a Z or a � 0, namely, for the photon–Z transition in the
’t Hooft–Feynman gauge,

Æ Z 2 \ R/37 f AZ � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/37 f AZ � 1

p2 � M2
0

ÕÆ Z 2 \ R/37 f AZ

ÔÆ Z 2 \ R/37 f AZ � Æ g 1 i/3Ö f AA Æ g 1 iÖ"7 f AZÕÆ Z 2 \ R/37 f AZ � Æ g 1 i/3Ö f AZ Æ g 1 iÖ"7 f ZZ ��Æ g 1 i/ f A o o Æ g 1 i7 f o oZ 8 (34)
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and, for the photon– � 0 transition in the same gauge,

Æ Z 2 \ R/ f A o o � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/ f A o o � 1

p2 � M2
0

ÕÆ Z 2 \ R/ f A o o
ÔÆ Z 2 \ R/ f A o o � Æ g 1 i/�Ö f AA Æ g 1 iÖ f A o oÕÆ Z 2 \ R/ f A o o � Æ g 1 i/�Ö f AZ Æ g 1 iÖ f Z o o ��Æ g 1 i/ f A o o Æ g 1 io o o o 0 (35)
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The reducible diagrams with an intermediate photon propagator satisfy
the WSTI by themselves. Indeed,

p/ p7 ÔÆ Z 2 \ R/37 f AZ � iM0p/ ÔÆ Z 2 \ R/ f A o o � 0 8 (36)

as it can be easily checked using eq. (26) with n � 1. On the contrary,
the remaining reducible diagrams must be added to the irreduciblecd� g4 � contributions in order to satisfy the WSTI for the photon–Z
mixing:

Theorem

p/ p7
ÕÆ Z 2 \ R/�7 f AZ� 2ÈÓ� 4i � p2 � M2

0 � � Æ
Z 2 \ I/�7 f AZ

� iM0p/
ÕÆ Z 2 \ R/ f A o 0� 2ÈÓ� 4i � p2 � M2

0 � ��Æ
Z 2 \ I/ f A o 0

� 0 0 (37)
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The Z self-ener gy
Also in the case of the WSTI for the cd� g4 � Z self-energy it is
convenient to separate the reducible contributions mediated by a
photon propagator from the rest of the reducible diagrams. In the
’t Hooft–Feynman gauge it is

Æ Z 2 \ R/37 f ZZ � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/37 f ZZ � 1

p2 � M2
0

ÕÆ Z 2 \ R/�7 f ZZ

ÔÆ Z 2 \ R/�7 f ZZ � Æ g 1 i/3Ö f ZA Æ g 1 iÖ"7 f AZÕÆ Z 2 \ R/�7 f ZZ � Æ g 1 i/3Ö f ZZ Æ g 1 iÖ"7 f ZZ ��Æ g 1 i/ f Z o o Æ g 1 i7 f o oZ 8 (38)

Æ Z 2 \ R/ f Z o o � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ R/ f Z o o � 1

p2 � M2
0

ÕÆ Z 2 \ R/ f Z o o
ÔÆ Z 2 \ R/ f Z o o � Æ g 1 i/3Ö f ZA Æ g 1 iÖ f A o oÕÆ Z 2 \ R/ f Z o o � Æ g 1 i/3Ö f ZZ Æ g 1 iÖ f Z o o � Æ g 1 i/ f Z o o Æ g 1 io o o o 8 (39)
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Æ Z 2 \ Ro o o o � 1
� 2ÈÓ� 4i

1
p2 ÔÆ Z 2 \ Ro o o o � 1

p2 � M2
0

ÕÆ Z 2 \ Ro o o o
ÔÆ Z 2 \ Ro o o o � Æ g 1 iÖ f o oA Æ g 1 iÖ f A o oÕÆ Z 2 \ Ro o o o � Æ g 1 iÖ f o oZ Æ g 1 iÖ f Z o o ��Æ g 1 io o o o Æ g 1 io o o o 8 (40)

and, once again, the reducible diagrams mediated by a photon
propagator satisfy the WSTI by themselves, i.e.

p/ p7 ÔÆ Z 2 \ R/37 f ZZ � M2
0 ÔÆ Z 2 \ Ro o o o � 2 i p/ M0 ÔÆ Z 2 \ R/ f Z o o � 0 8 (41)

as it can be easily checked using the one-loop WSTI for the photon–Z
mixing [eq. (27) with n � 1].
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The W self-ener gy

All the cd� g4 � 1PR contributions to the WSTI for the W self-energy are
mediated, in the ’t Hooft–Feynman gauge, by a charged particle of
mass M. A separate analysis of their contribution does not lead, in this
case, to particularly significant simplifications of the structure of the
WSTI. However, some cancellations among the reducible terms occur,
allowing to obtain a relation that will be useful in the discussion of the
Dyson resummation of the W propagator. The 1PR quantities that
contribute to the cd� g4 � WSTI for the W self-energy have the following
form:

Æ Z 2 \ R/�7 f W W � 1
� 2ÈÓ� 4i � p2 � M2 � D

g 1 i
WW

2 Ê /37
� p/ p7 2 D

g 1 i
WW P

g 1 i
WW � p2 P

g 1 i
WW

2 � M2 G
g 1 i
W o 2

(42)
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Æ Z 2 \ R/ f W o � � i p/ M
� 2ÈÓ� 4i � p2 � M2 � G

g 1 i
W o D

g 1 i
WW � p2 P

g 1 i
WW � R

g 1 ioÎo
Æ Z 2 \ RoÎo � 1

� 2ÈÓ� 4i � p2 � M2 � p2 M2 G
g 1 i
W o 2 � R

g 1 ioÎo 2

0 (43)

Contracting the free indices with the corresponding external momenta,
summing the three contributions and employing eq. (29) with n � 1, we
obtain

� 2ÈÓ� 4i p/ p7 Æ Z 2 \ R/37 f W W � M2 Æ Z 2 \ RoÎo � 2 i p/ M Æ Z 2 \ R/ f W o � p2 M2 G
g 1 i
W o 2

� R
g 1 ioyo D

g 1 i
WW � p2 P

g 1 i
WW 0 (44)
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Dyson resummed propagator s and their WSTI

Dyson resummed propagator s

We will now present the Dyson resummed propagators for the
electroweak gauge bosons. We will then employ the results of sec. 27
to show explicitly, up to terms of cd� g4 � , that the resummed
propagators satisfy the WST identities.
Following definition (23) for Æ ij , the function Æ I

ij represents the sum of
all 1PI diagrams with two external boson fields, i and j , to all orders in
perturbation theory (as usual, the external Born propagators are not to
be included in the expression for Æ I

ij ).
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As we did in eqs. (24), we write explicitly its ,

Lorentz structure

Æ I/37 f VV � D I
VV Ê /37ä� P I

VV p/ p7 (45)

Æ I/ f VS � � ip/ MS GI
VS Æ I

SS � R I
SS 8 (46)

where V and S indicate SM vector and scalar fields, and p/ is the
incoming momentum of the vector boson [note: Æ I/ f SV ���%Æ I/ f VS].
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We also introduce¾ the

transver se and longitudinal projector s

t /�7 � Ê /37æ� p ç p è
p2 8 l /37 � p ç p è

p2 8
t /�Ö t Ö"7 � t /37 8 l /�Ö l Ö"7 � l /37 8 t /3Ö l Ö"7 � 0 8
Æ I/37 f VV � D I

VV t/37 � LI
VV l/37 8 LI

VV � D I
VV � p2 P I

VV 0 (47)
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The full propagator for a field i which mixes with a field j via the
function Æ I

ij is given by the perturbative series

�e ii � e
ii � e

ii Ç
n h 0

n � 1

l h 1 kl

Æ I
kl D 1kl

e
kl kl

(48)

� e
ii � e

ii Æ I
ii
e

ii � e
ii

k1 h i f j Æ
I
ik1

e
k1k1

Æ I
k1 i
e

ii �ê+-+-+ 8

where k0 � kn � 1 � i , while for l ë� n � 1, kl can be i or j .
e

ii is the Born
propagator of the field i .
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We rewrite Eq.(48) as

�e ii � e ii í 1 ���3Æ e � ii î � 1 8 (49)

and refer to �e ii as the resummed propagator. The quantity �3Æ e � ii is
the sum of all the possible products of Born propagators and
self-energies, starting with a 1PI self-energy Æ I

ii , or transition Æ I
ij , and

ending with a propagator
e

ii , such that each element of the sum
cannot be obtained as a product of other elements in the sum.
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A diagrammatic representation of �3Æ e � ii is the following,

�3Æ e � ii � � � �ð+-+-+
where the Born propagator of the field i (j) is represented by a dotted
(solid) line, the white blob is the i 1PI self-energy, and the dots at the
end indicate a sum running over an infinite number of 1PI j
self-energies (black blobs) inserted between two 1PI i–j transitions
(gray blobs).
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It is also useful to define, as an auxiliary quantity, the partially
resummed propagator for the field i ,

Õe
ii , in which we resum only the

proper 1PI self-energy insertions Æ I
ii , namely,

Õe
ii � e ii 1 �òÆ I

ii
e

ii
� 1 0 (50)

If the particle i were not mixing with j through loops or two-leg vertex
insertions,

Õe
ii would coincide with the resummed propagator �e ii .
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Õe
ii can be graphically depicted asÕe
ii � � � � +-+-+ 0
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Partially resummed propagators allow for a compact expression for�3Æ e � ii , �3Æ e � ii �×Æ I
ii
e

ii ��Æ I
ij

Õe
jj Æ I

ji
e

ii 8 (51)

so that the resummed propagator of the field i can be cast in the form

�e ii � e ii 1 � Æ I
ii ��Æ I

ij

Õe
jj Æ I

ji
e

ii

� 1

0 (52)

We can also define a resummed propagator for the i–j transition. In
this case there is no corresponding Born propagator, and the
resummed one is given by the sum of all possible products of 1PI i and
j self-energies, transitions, and Born propagators starting with

e
ii and

ending with
e

jj . This sum can be simply expressed in the following
compact form, �e ij � �e ii Æ I

ij

Õe
jj 0 (53)
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The charged sector

We now apply Eq.(50), Eq.(52), Eq.(53)) to W and charged Goldstone
boson fields. The partially resummed propagator of the charged
Goldstone scalar follows immediately from Eq.(50). The Born W and �propagators in the ’t Hooft–Feynman gauge are

e /�7
WW � Ê /37

p2 � M2 8 e«ö3ö � 1
p2 � M2 8 (54)

where, for simplicity of notation, we have dropped the coefficients� 2ÈÓ� 4i .
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In the same gaugeø , the partially resummed � and W propagators are

Õe«ö3ö � e«ö3ö
1 �ùÆ Iö�ö e«ö3ö � 1 � p2 � M2 � R Iö3ö � 1

(55)

Õe /�7
WW � 1

p2 � M2 � D I
WW

Ê /�7±� p/ p7 P I
WW

p2 � M2 � D I
WW � p2P I

WW 0 (56)
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Equation (56) assumes a more compact form when expressed in
terms of the transverse and longitudinal projectors t/�7 and l/37 ,

Õe /37
WW � t /37

p2 � M2 � D I
WW

� l /�7
p2 � M2 � LI

WW 0 (57)

The resummed W and � propagators can be then derived from
Eq.(52),

�eûö3ö � p2 � M2 � R Iö�ö � p2 M2 � GI
W

ö � 2
p2 � M2 � LI

WW

� 1

(58)

�e /�7
WW � t /37

p2 � M2 � D I
WW

� l /�7 p2 � M2 � LI
WW � p2M2 � GI

W

ö � 2
p2 � M2 � R Iö3ö

� 1

0 (59)
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The resummed propagator for the W– � transition is provided by
Eq.(53),

�e /
W

ö � � ip/ MGIö
W

p2 � M2 � R Iö�ö p2 � M2 � LI
WW � p2M2 � GI

W

ö � 2
p2 � M2 � R Iö�ö

� 1

0 (60)

We will now show explicitly, up to terms of cd� g4 � , that the resummed
propagators defined above satisfy the following WST identity:

Theorem

p/ p7 �e /�7WW � i p/ M �e /
W

ö � i p7 M �e 7ö
W � M2 �e«ö3ö � 1 8 (61)
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which, in turn, is satisfied if

p2M2 GI
W

ö 2 � M2R Iö3ö � p2LI
WW � R Iö�ö LI

WW � 2p2M2GI
W

ö � 0 0 (62)

This equation can be verified explicitly, up to terms of cd� g4 � , using the
WSTI for the W self-energy: at cd� g2 � Eq.(62) becomes simply

M2R
g 1 iö3ö � p2L

g 1 i
WW � 2p2M2G

g 1 i
W

ö � 0 8 (63)

which coincides with eq. (29) for n � 1.

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 58 / 80



þ

To prove Eq.(62) at cd� g4 � we can combine the last of Eq.(25) with
n � 2 and Eq.(44) to get 1

p2M2 G
g 1 i
W
ö 2 � M2R

g 2 i Iö3ö � p2L
g 2 i I
WW � R

g 1 iö�ö L
g 1 i
WW � 2p2M2G

g 2 i I
W
ö � 0 0 (64)

1For simplicity of notation, in this section we dropped the coefficients ÿ 2� � 4i .
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The neutral sector

neutral sector�
The SM neutral sector involves the mixing of three boson fields, A/ , Z/
and � 0. As the definitions for the resummed propagators presented at
the beginning of sec. 44 refer to the mixing of only two boson fields, we
will now discuss their generalization to the three-field case.

Consider three boson fields i , j and k mixing up through radiative
corrections. For each of them we can define a partially resummed
propagator

Õe
ll (l � i 8 j 8 or k) according to Eq.(50). For each pair of the

three fields, say � j 8 k � , we can also define the following intermediate
propagators
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Ôe jj � j 8 k � � e
jj 1 � Æ I

jj ��Æ I
jk

Õe
kk Æ I

kj
e

jj

� 1
(65)

Ôe jk � j 8 k � � Ôe jj � j 8 k �ÚÆ I
jk

Õe
kk 8 (66)

where the parentheses on the l.h.s. indicate the chosen pair of fields.
[ Ôe kk � j 8 k � and Ôe kj � j 8 k � can be simply derived from the above
definitions by exchanging j � k .] The reader will immediately note that
the r.h.s. of the above eqs. (65, 66) are almost identical to those of
eqs. (52, 53), with the appropriate renaming of the fields. Equations
(65, 66), introduced in the context of three-field mixing, define however
only intermediate propagators (denoted by the tilde), while eqs. (52,
53), presented in the analysis of the two-field mixing case, define the
complete resummed propagators (denoted by the bar).
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Indeed, the definition of full resummed propagator in the three-field
mixing scenario requires one further step: the resummed propagator
for a field i mixing with the fields j and k via the functions Æ I

ij , Æ I
ik andÆ I

jk can be cast in the following form

�e ii � e ii 1 � Æ I
ii �

l fm Æ I
il Ôe lm� j 8 k �ÚÆ I

mi
e

ii

� 1

8 (67)

where l and m can be j or k , while the resummed propagator for the
transition between the fields i and k is
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�e ik � �e ii

l h j f k Æ
I
il Ôe lk � j 8 k � 0 (68)

Armed with eqs. (65)–(68), we can now present the A/ , Z/ and A/ –Z/
propagators. First of all, the Born A/ , Z/ and � 0 propagators in the
’t Hooft–Feynman gauge are

e /37
AA � Ê /�7

p2 8 e /37
ZZ � Ê /37

p2 � M2
0
8 eûö

0

ö
0 � 1

p2 � M2
0
8 (69)

Giampier o PASSARINO ( Torino ) TWO-LOOP Renormalization in the Making July 12, 2006 63 / 80



�

where, for simplicity of notation, we have dropped once again the
coefficients � 2ÈÓ� 4i . The partially resummed propagators (three) can be
immediately computed via Eq.(50) and the intermediate ones (twelve)
via eqs. (65) and (66). Finally, after some algebra, eqs. (67) and (68)
provide us with the fully resummed propagators:�e VV � t/37 �e T

VV � l/37 �e L
VV 8 with V � A 8 Z and

�e T
AA � p2 � D I

AA � � D I
AZ � 2

p2 � M2
0 � D I

ZZ

� 1

(70)

�e T
ZZ � p2 � M2

0 � D I
ZZ � � D I

AZ � 2
p2 � D I

AA

� 1

(71)

�e T
AZ � D I

AZ p2 � D I
AA p2 � M2

0 � D I
ZZ ��� D I

AZ � 2 � 1

0 (72)
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The expressions of the longitudinal components of these propagators
are more lengthy and we will only present them up to terms of cd� g4 � :

�e L
AA � p2 �£cd� g6 � � 1

(73)

�e L
ZZ � p2 � M2

0 � LI
ZZ � � LI

AZ � 2
p2 � p2M2

0 � GI
Z o o � 2

p2 � M2
0

�,cd� g6 �
� 1

(74)

�e L
AZ � LI

AZ

p2 p2 � M2
0 � LI

ZZ

� M2
0

p2 � M2
0

2 GI
A o o GI

Z o o �êcd� g6 � 0 (75)
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Equation (73) achieves its compact form due to the use of the WSTI
(26) and (27)

�
with n � 1 8 2. Also eq. (75) has been simplified using

L Z 1 \AA � 0 [i.e. eq. (26) with n � 1]. We point out that if we use the
one-loop WSTI for the photon self-energy, eq. (26), the transverse part
of the resummed A–Z propagator becomes, up to terms of cd� g4 � ,

�e T
AZ � D I

AZ p2 1 � P I
AA p2 � M2

0 � D I
ZZ

� 1 ��cd� g6 � 8 (76)

thus showing a pole at p2 � 0 if D I
AZ � p2 � 0 � were not vanishing

because of the rediagonalization of the neutral sector.
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In order to show explicitly, up to terms of cd� g4 � , that the above
resummed propagators satisfy their WSTI, we also present the
resummed propagators involving the neutral scalar � 0:

�e /
A o o �ù� ip/ M0

p2

GI
Z o o LI

AZ

p2 � M2
0

2 � GI
A o o

p2 � M2
0 � R Io o o o �,cd� g6 � (77)

�e /
Z o o � � ip/ M0

p2 � M2
0 � LI

ZZ

GI
A o o LI

AZ

p2 p2 � M2
0

� GI
Z o o

p2 � M2
0 � R Io o o o ��cd� g6 � (78)

�e o o o o � p2 � M2
0 � R Io o o o � M2

0 GI
A o o 2� p2M2

0

p2 � M2
0

GI
Z o o 2

� 1

�,cd� g6 � 0(79)
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With these results, and with the WSTI (Eq.(26))–(Eq.(28)), (Eq.(37))
and (Eq.(41)),

�
we can finally prove, up to cd� g4 � , the following WSTI for

the resummed A, Z and A–Z propagators,

p/ p7 �e /37AA � 1 (80)

p/ p7 �e /37AZ � ip/ M0 �e /A o o � 0 (81)

p/ p7 �e /37ZZ � M2
0 �e o o o o � 2ip/ M0 �e /Z o o � 1 0 (82)
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The LQ basis

For the purpose of the renormalization, it is more convenient to extract
from the quantities defined in the previous sections the factors
involving the weak mixing angle

�
. To achieve this goal, we employ the

LQ basis, which relates the photon and Z fields to a new pair of fields,
L and Q:

Z/
A/ � c 0

s 1
!
s

L/
Q/ 0 (83)
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Consider the fermion currents j
/
A and j

/
Z coupling to the photon and to

the Z . As the Lagrangian must be left unchanged under this
transformation, namely j

/
Z Z/ � j

/
A A/û� j

/
L L/æ� j

/
Q Q/ , the currents

transform as

j
/
Z

j
/
A

� 1
!
c � s2 ! c

0 s
j
/
L

j
/
Q 0 (84)
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If we rewrite the SM Lagrangian in terms of the fields L and Q, and
perform the same transformation (83) on the FP ghosts fields [from
(XA,XZ ) to (XL� ,XQ)], then all the interaction terms of the SM Lagrangian
are independent of

�
. Note that this is true only if the relation

M
!
c � M0 is employed, wherever necessary, to remove the remaining

dependence on
�
. In this way the dependence on the weak mixing

angle is moved to the kinetic terms of the L and Q fields which, clearly,
are not mass eigenstates.

The relevant fact for our discussion is that the couplings of Z , photon,
XZ and XA are related to those of the fields L and Q, XL and XQ by
identities like the one described, in a diagrammatic way, in the
following figure:
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Z
f

f

� 1
c

L
f

f

� s2

c
Q

f

f

A Z

W

� s
c

Q L

W

� s3

c
Q Q

W

0
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As the couplings of the fields L, Q, XL and XQ do not depend on
�
, all

the dependence on this parameter is factored out in the coefficients in
the r.h.s. of these identities.
Since

�
appears� only in the couplings of the fields A, Z , XA and XZ

(once again, the relation M
!
c � M0 must also be employed, wherever

necessary), it is possible to single out this parameter in the two-loop
self-energies of the vector bosons. Consider, for example, the
transverse part of the photon two-loop self-energy D Z 2 \AA (which includes
the contribution of both irreducible and reducible diagrams). All
diagrams contributing to D Z 2 \AA can be classified in two classes: those
including � i � one internal A, Z , XA or XZ field, and � ii � those not
containing any of these fields. The complete dependence on

�
can be

factored out by expressing the external photon couplings and the
internal A, Z XA or XZ couplings of the diagrams of class � i � in terms of
the couplings of the fields L, Q, XL and XQ, namely
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D Z 2 \AA � s2 1
c2 f AA

1 � f AA
2 � s2f AA

3 8 (85)

where the functions f AA
i � i � 1 8 2 8 3 � are

�
-independent. Similarly, we

can factor out the
�

dependence of the transverse part of the two-loop
photon–Z mixing and Z self-energy,

D Z 2 \AZ � s
c

1
c2 f AZ

1 � f AZ
2 � s2f AZ

3 � s4f AZ
4 8 (86)

D Z 2 \ZZ � 1
c2

1
c2 f ZZ

1 � f ZZ
2 � s2f ZZ

3 � s4f ZZ
4 � s6f ZZ

5 8 (87)
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where, once again, the functions f AZ
i and f ZZ

i � i � 1 8 0-0-0 8 5 � do not
depend on

�
. Analogous relations hold for the longitudinal components

of the two-loop self-energies.
We note that D Z 2 \AZ and D Z 2 \ZZ also contain a third class of diagrams
containing more than one internal Z (or XZ ) field (up to three, in D Z 2 \ZZ ).
However, the diagrams of this class involve the trilinear vertex ZHZ (or�XZ HXZ ), which does not induce any new

�
dependence.
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However, from the point of view of renormalization it is more convenient
to distinguish between the

�
dependence originating from external legs

and the one introduced by external legs. We define, to all orders,

DAA � s2 Æ QQ � ext p2 � s2 Ç
n h 1

g2

16 È 2

n Æ g n iQQ � ext p2 8
DAZ � s

c
�

AZ � ext � s
c
Ç

n h 1

g2

16 È 2

n
�äg n i

AZ � ext 8
DZZ � 1

c2

�
ZZ � ext � 1

c2 Ç
n h 1

g2

16 È 2

n
� g n i

ZZ � ext 8
� g n i

AZ � ext � � g n i3Q � ext � s2 Æ g n iQQ � ext p2 8
� g n i

ZZ � ext � � g n i33 � ext � 2 s2 � g n i
3Q � ext � s4 Æ g n iQQ � ext p2 0 (88)
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�

Furthermore, our procedure is such that

� g n i
3Q � ext �×Æ g n i3Q � ext p2 8 (89)

with Æ g n i3Q � ext regular� at p2 � 0. At c g2 the external quantities are�
-independent while, at c g4 the relation with the coefficients of

Eqs.(85)–(87) is

Æ g 2 iQQ � ext p2 � 1
c2 f AA

1 � f AA
2 � f AA

3 s2 8
�äg 2 i

3Q � ext � 1
c2 � f AA

1 � f AZ
1 �¹� f AA

1 � f AZ
2 � s2 � f AA

2 � f AZ
3 ��� s4 � f AA

3 � f AZ
4 �

� g 2 i
33 � ext � 1

c2 � f AA
1 � 2 f AZ

1 � f ZZ
1 ��� f AA

1 � 2 f AZ
1 � f ZZ

2

� s2 �y� f AA
1 � 2 f AZ

2 � f ZZ
3 �#� s4 � f AA

2 � 2 f AZ
3 � f ZZ

4 �
� s6 � f AA

3 � 2 f AZ
4 � f ZZ

5 � 8 (90)

and s 8 c in Eq.(90) should be evaluated at c g0 .
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Consider the process f f 1 hh; taking into account Dyson re-summed
propagators and neglecting, for the moment, vertices and boxes we
write

� � f f 1 hh � � � 2ÈÓ� 4 i � e2 Qf Qh � /�� � / �e T
AA

� eg
2 c

Qf � / � � / � vh � ah � 5 � �e T
ZA

� eg
2 c

Qh � / � vf � af � 5 � � � / �e T
ZA

� g2

4 c2 � / � vf � af � 5 � � � / � vh � ah � 5 � �e T
ZZ (91)

where f and h are fermions with quantum numbers QI 8 I3i 8 i � f 8 h;
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furthermore we have introduced

vf � I3f � 2 Qf s2 8 af � I3f 8 (92)

with e2 � g2 s2. Always neglecting terms proportional to fermion
masses it is useful to introduce an effective weak-mixing angle as
follows:

Definition

s2
eff � s2 1 � Æ AZ � ext

1 � s2 Æ AA � ext
8 Vf � I3f � 2 Qf s2

eff 0 (93)
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The amplitude of Eq.(91) can be cast into the following form:

� � f f 1 hh �µ�ò� 2ÈÓ� 4 i � � / � � / 1
1 � s2 Æ AA � ext

e2 Qf Qh

p2

� g2

4 c2 � / � Vf � af � 5 � � � / � Vh � ah � 5 � �e T
ZZ 0 (94)

The functions Æ AA � ext 8 Æ AZ � ext and
�

ZZ � ext start at c g2 in perturbation
theory. Eq.(94) shows the nice effect of absorbing – to all orders –
non-diagonal transitions into a redefinition of s2 and forms the basis for
introducing renormalization equations in the neutral sector, e.g. the
one associated with the fine-structure constant ¥ . Questions related to
gauge-parameter independence of Dyson re-summation, e.g. in
Eq.(93), will not be addressed here.
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