QCD and collider phenomenology *part one*

Sven-Olaf Moch

sven-olaf.moch@desy.de

DESY, Zeuthen

- CALC-2006, Dubna, July 21-22 2006 -

QCD and collider phenomenology – p.1

The challenge

How well do we know LHC cross sections?

The challenge

- How well do we know LHC cross sections?
- At the LHC many Standard Model processes will be measured to very high accuracy

The challenge

- How well do we know LHC cross sections?
- At the LHC many Standard Model processes will be measured to very high accuracy
- Successful experimental search relies heavily on the ability to make precision predictions for hard scattering cross-sections, e.g.
 - Higgs production
 - new physics phenomena (BSM)
 - backgrounds
 - evolution of parton distributions in proton

The challenge

- How well do we know LHC cross sections?
- At the LHC many Standard Model processes will be measured to very high accuracy
- Successful experimental search relies heavily on the ability to make precision predictions for hard scattering cross-sections, e.g.
 - Higgs production
 - new physics phenomena (BSM)
 - backgrounds
 - evolution of parton distributions in proton
- LHC will be a QCD machine (LEP was an electroweak machine)
 - provide accurate predictions (including QCD radiative corrections)
 - perturbative QCD is essential and established part of toolkit (we no longer "test" QCD)

QCD jets

Lessons from Tevatron

- Top search was the outstanding issue at the start of run I at Tevatron
- Initiated many developments in LO multi-parton generation for
 $pp \rightarrow W^{\pm} + \text{jets}$ (e.g. numerical recursion, algebraic generation of tree level amplitudes)
 - unexpected challenge: importance of matching issues between matrix elements and shower Monte Carlo's
 - initiated development of "numerical" partonic NLO jet Monte Carlo's

Expectations for LHC

- In the coming years
 - all new challenges for NLO are encapsulated by Higgs searches at ATLAS/CMS
 - Iarge number of high multiplicity processes

LHC "priority" wishlist

process	background to
$V \in \{\gamma, W^{\pm}, Z\}$)	
$pp \rightarrow VV + 1$ jet	$t\bar{t}H$, new physics
$pp \rightarrow H + 2 { m jets}$	H production by vector boson fusion (VBF)
$pp ightarrow t ar{t} b ar{b}$	$tar{t}H$
$pp \rightarrow t\bar{t} + 2{ m jets}$	$tar{t}H$
$pp ightarrow VV b ar{b}$	$VBF \rightarrow VV, t\bar{t}H$, new physics
$pp \rightarrow VV + 2{ m jets}$	$VBF \to VV$
$pp ightarrow V + 3 { m jets}$	various new physics signatures
$pp \rightarrow VVV$	SUSY trilepton

Les Houches 2005 [hep-ph/0604120]

Original experimenter's wishlist

Tevatron Run II Monte Carlo workshop April 2001

			in brieft riph cool
Single boson	Diboson	Triboson	Heavy flavour
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
$W + b\bar{b} + \leq 3j$	$WW + b\overline{b} + \leq 3j$	$WWW + bb + \le 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\overline{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \le 3j$	$t\bar{t} + W + \leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \le 2j$
$Z + \frac{b\bar{b}}{b} + \le 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \le 2j$
$Z + c\bar{c} + \le 3j$	$ZZ + c\bar{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\bar{b} + \leq 2j$
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\bar{b} + \leq 3j$
$\gamma + b\overline{b} + \leq 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$		
$\gamma + c\bar{c} + \leq 3j$	$\gamma\gamma + c\bar{c} + \leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\overline{b} + \leq 3j$		
	$WZ + c\overline{c} + \leq 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + \leq 3j$		

Run II Monte Carlo Workshop, April 2001

How reliable are background estimates?

Gianotti, Mangano '05

Pythia shower prediction

- SM background in channel $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + 4jets$ from Alpgen Gianotti, Mangano '05
 - $Njet \geq 4$
 - $E_{T(1,2)} > 100 \text{GeV}$
 - $E_{T(3,4)} > 50 \text{GeV}$
 - MET = $M_{\text{eff}} + \max(100, M_{\text{eff}}/4)$

•
$$M_{\text{eff}} = \text{MET} + \sum_{i} E_{Ti}$$

- SM background in channel $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + 4jets$ from Alpgen Gianotti, Mangano '05
 - $Njet \geq 4$
 - $E_{T(1,2)} > 100 \text{GeV}$
 - $E_{T(3,4)} > 50 \text{GeV}$
 - $MET = M_{eff} + max(100, M_{eff}/4)$

•
$$M_{\text{eff}} = \text{MET} + \sum_{i} E_{Ti}$$

- Early ATLAS TDR studies with Pythia are overly optimistic
- Background largely underestimated in high-end tail of missing E_T (normalization of Z → $\nu \overline{\nu}$ + jets from experiment Z → e^+e^- + jets) Gianotti, Mangano '05
- Shape of BSM signal indistinguishable from background shape at LO
- Significance of potential disagreement between data and Alpgen ?

- Alpgen
 - based on leading order matrix elements
 - models hard jets much better than e.g. Pythia

- Alpgen
 - based on leading order matrix elements
 - models hard jets much better than e.g. Pythia

• Need for $pp \rightarrow Z + 4$ jets at NLO

Perturbative QCD corrections essential

- NLO important for rates (background); large K-factors, new parton channels may dominate beyond tree level
 - e.g. W + 4 jets is $\mathcal{O}(\alpha_s^4)$ and $\Delta(\alpha_s^{\text{LO}}) \simeq 10\%$ gives $\Delta(\sigma^{\text{LO}}) \simeq 40\%$

Perturbative QCD corrections essential

- NLO important for rates (background); large K-factors, new parton channels may dominate beyond tree level
 - e.g. W + 4 jets is $\mathcal{O}(\alpha_s^4)$ and $\Delta(\alpha_s^{LO}) \simeq 10\%$ gives $\Delta(\sigma^{LO}) \simeq 40\%$
- NNLO (for di-jets) important for scale uncertainty, PDF determination, modelling of jets, ...

 ycut
 ycut

Perturbative QCD corrections essential

- NLO important for rates (background); large K-factors, new parton channels may dominate beyond tree level
 - e.g. W + 4 jets is $\mathcal{O}(\alpha_s^4)$ and $\Delta(\alpha_s^{\text{LO}}) \simeq 10\%$ gives $\Delta(\sigma^{\text{LO}}) \simeq 40\%$
- NNLO (for di-jets) important for scale uncertainty, PDF determination, modelling of jets, ...

 ycut
 ycut

- Hadronic di-jets: large statistics even with high-pt cuts
 - experimental calibration (HCAL uniformity, establish missing E_t)
 - gluon jets constrain gluon PDF at medium/large x
 - searches for quark sub-structure (di-jet angular correlations)

QCD theory (I)

Theory requirements

- General solution applying to any process; scalable to large numbers n of external partons
- Numerical stability; solution to be automated

Status

- Efficient techniques for computing tree amplitudes A exist
 - recursion relations Berends, Giele '87
- Complete NLO calculations available (codes)

Many people; See e.g. Les Houches 2005 [hep-ph/0604120]

- many $2 \rightarrow 3$ processes
- $2 \rightarrow 4 \text{ processes}$
 - electroweak corrections to $e^+e^- \rightarrow 4$ fermions
 Denner, Dittmaier, Roth, Wieders '05
 - electroweak corrections to $e^+e^- \rightarrow \nu \bar{\nu} H H$ Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu, Yasui '05

QCD theory (II)

Progress

- Recent developments in amplitudes for multi-particle production
 - on-shell recursions (analyticity properties), unitarity, ...
 - constructive approach at NLO (a lot of recent activity) Bedford, Berger, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Buchbinder, Cachazo, Dixon, Dunbar, Feng, Forde, Kosower, Mastrolia, Perkins, Spence, Travaglini, Xiao, Yang, Zhu + many others

Problems

- Multiple scales (particles with different masses, e.g. $M_W, M_Z, M_{top}, M_{SUSY}, \dots$)
- Numerical phase space integration (efficiency!!)
 - tedious at NLO
 - very difficult at NNLO

Plan

Rest of this lecture

- Review of Feynman rules
- Colour ordering
- Spinor conventions
- Helicity amplitudes
- On-shell recursions at tree level

Feynman rules (I)

- Propagators
 - fermions, gluons, ghosts
 - covariant gauge

Feynman rules (II)

Vertices

$$-i g (t^{a})_{ji} \gamma^{\mu}$$
$$-g f^{abc} ((p-q)^{\rho} g^{\mu\nu} + (q-r)^{\mu} g^{\nu\rho} + (r-p)^{\nu} g^{\mu\rho})$$

$$-i g^{2} f^{xac} f^{xbd} (g^{\mu\nu}g^{\rho\sigma} - g^{\mu\sigma}g^{\nu\rho})$$

$$-i g^{2} f^{xad} f^{xbc} (g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma})$$

$$-i g^{2} f^{xab} f^{xcd} (g^{\mu\rho}g^{\nu\sigma} - g^{\mu\sigma}g^{\nu\rho})$$

 $g\,f^{abc}\,q^{\mu}$

Multiparticle production

- Number of Feynman diagrams for n-parton amplitudes grows quickly with n
 - example n-gluon amplitudes

- Feynman diagram evaluation very inefficient for many legs
 - too many diagrams, terms per diagram, kinematic variables

Quantum numbers

QCD amplitudes for n partons

- Complete amplitude A
 - dependence on momenta k_i , helicities λ_i and colour a_i
- Keep track of quantum phases
 - computing transition amplitude rather than cross-section
- Use helicity/colour quantum-numbers of amplitude A
 - decompose A into simpler, gauge-invariant pieces
 (so called partial amplitudes A)
- Exploit effective supersymmetry of QCD at tree level
 - manage spins of particles propagating around the loop
- Transition to numerical evaluation at very end of calculation
 - combine the virtual and real corrections
 - square amplitudes, sum over helicities and colours and obtain unpolarized cross-sections

Colour ordering (I)

- SU(N)-generators t^a from fundamental representation Tr $(t^a t^b) = \delta^{ab}$
- SU(N)-generators f^{abc} of adjoint representation

Fierz identity

Partial amplitudes

- Color decomposition of *n*-parton amplitudes A_n
 - colour ordered partial amplitudes A with kinematic information

Colour ordering (II)

- Tree level amplitude $\mathcal{A}^{\text{tree}}$ with *n* external gluons
 - sum over all non-cyclic permutations S_n/Z_n of external gluons

$$\mathcal{A}_{n}^{\text{tree}}\left(\{k_{i},\lambda_{i},a_{i}\}\right) = g^{n-2} \sum_{\sigma \in S_{n}/Z_{n}} \text{Tr}(t^{a_{\sigma}(1)} \dots t^{a_{\sigma}(n)}) A(\sigma(1^{\lambda_{1}}),\dots,\sigma(n^{\lambda_{n}}))$$

Tree level amplitude $\mathcal{A}^{\text{tree}}$ with $q\bar{q}$ and n-2 external gluons

$$\mathcal{A}_{n}^{\text{tree}}\left(\{k_{i},\lambda_{i},a_{i}\}\right) = g^{n-2} \sum_{\sigma \in S_{n-2}} \left(t^{a_{\sigma}(3)} \dots t^{a_{\sigma}(n)}\right)_{i_{2}}^{j_{1}} A(1_{\bar{q}}^{\lambda_{1}},2_{q}^{\lambda_{2}},\sigma(3^{\lambda_{3}}),\dots,\sigma(n^{\lambda_{n}}))$$

Instantons

- Gauge field $A_{\mu}(x)$ defines mapping of $S^3 \to SU(N)$
- Non-trivial coupling of space-time and colour coordinates
- Classical (Euclidean) solution for self-dual field strength
 - $F_{\mu\nu} = \tilde{F}_{\mu\nu}$ with $\tilde{F}_{\mu\nu} = 1/2 \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$ (local minima of the action)

$$(A_{\mu})_{i}^{j}(x) = -\frac{\mathrm{i}}{g}\rho^{2} \frac{\left(U(\sigma_{\mu}(\sigma^{\nu}x_{\nu}) - x_{\mu})U^{\dagger}\right)_{i}^{j}}{x^{2}(x^{2} + \rho^{2})}$$

- Physical intepretation: tunneling transition between distinct vacua
- Instanton solutions depend on collective coordinate
 - position x
 - 🧕 size ρ
 - colour orientation U

impression of QCD action density by D. Leinweber

Colour ordered rules (III)

Feynman rules for colour ordered partial amplitudes

vertices, propagators (omitting ghosts)

Colour ordered rules (IV)

Calculate only diagrams with cyclic colour ordering

 example 5-gluon amplitude A₅ (10 diagrams instead of 25)

- In general big reduction in number of Feynman diagrams
 - example *n*-gluon amplitudes

n	diagrams	colour ordered diagrams
4	4	3
5	25	10
6	220	36
7	2485	133
8	34300	501
9	559405	1991
10	10525900	7335

Spinor conventions (I)

Massless Dirac spinors $\psi(k)$ with momentum k

• chiral representation of Dirac γ matrices

$$\gamma^{0} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} \mathbf{0} & \sigma^{i} \\ -\sigma^{i} & \mathbf{0} \end{pmatrix}, \qquad \gamma_{5} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$

• chiral projections $\psi_{\pm}(k) = \frac{1}{2}(1 \pm \gamma_5)\psi(k)$

Massless Weyl spinors $u_{\pm}(k)$ with \pm -chirality

- construction of chiral compontents of Dirac spinor (4-dim) $\psi(k)$ from two Weyl spinors (2-dim) $u_{\pm}(k)$
- (Weyl) spinor inner-products

 $\langle jl \rangle = \langle j^{-}|l^{+} \rangle = \overline{u_{-}}(k_{j})u_{+}(k_{l})$ $[jl] = \langle j^{+}|l^{-} \rangle = \overline{u_{+}}(k_{j})u_{-}(k_{l}) = \operatorname{sign}(k_{j}^{0}k_{l}^{0})\langle lj \rangle^{*}$

Scalar product of Lorentz-vectors

$$\langle ij\rangle[ji] = 2k_i \cdot k_j = s_{ij}$$

Sven-Olaf Moch

QCD and collider phenomenology - p.22

Spinor conventions (II)

Gordon identity

$$\langle i^{\pm}|\gamma^{\mu}|i^{\pm}
angle \ = \ 2k_{i}^{\mu}$$

Antisymmetry

 $\langle ji \rangle = -\langle ij \rangle, \qquad [ji] = -[ij], \qquad \langle ii \rangle = [ii] = 0$

Fierz rearrangement

$$\langle i^+ | \gamma^{\mu} | j^+ \rangle \langle k^+ | \gamma_{\mu} | l^+ \rangle = 2 [ik] \langle lj \rangle$$

Charge conjugation of current

$$\langle i^+ | \gamma^\mu | j^+ \rangle = \langle j^- | \gamma^\mu | i^- \rangle$$

Schouten identity

$$\langle ij \rangle \langle kl \rangle = \langle ik \rangle \langle jl \rangle + \langle il \rangle \langle kj \rangle$$

 \boldsymbol{n} Momentum conservation in *n*-point amplitude $\sum_{i=1}^{n} k_i^{\mu} = 0$ $\sum_{i=1}^{n} [ji]\langle ik \rangle = 0$ $i \neq j, k$

Spinor conventions (III)

• Polarization vector for massless gauge boson (helicity states ± 1)

 \bullet spinor representation for boson with momentum k

$$\epsilon^{\pm}_{\mu}(k,q) = \pm \frac{\langle q^{\mp} | \gamma_{\mu} | k^{\mp} \rangle}{\sqrt{2} \langle q^{\mp} | k^{\pm} \rangle}$$

 massless auxiliary vector q (reference momentum) reflects on-shell gauge degrees of freedom

Properties

Sven-Olaf Moch

- ϵ^{\pm} transverse to k for any q, that is $\epsilon^{\pm}(k,q) \cdot k = 0$.
- Complex conjugation reverses helicity: $(\epsilon_{\mu}^{+})^{*} = \epsilon_{\mu}^{-}$
- Normalization

$$\epsilon^{+} \cdot (\epsilon^{+})^{*} = \epsilon^{+} \cdot \epsilon^{-} = -\frac{1}{2} \frac{\langle q^{-} | \gamma_{\mu} | k^{-} \rangle \langle q^{+} | \gamma^{\mu} | k^{+} \rangle}{\langle q k \rangle [q k]} = -1$$

$$\epsilon^{+} \cdot (\epsilon^{-})^{*} = \epsilon^{+} \cdot \epsilon^{+} = \frac{1}{2} \frac{\langle q^{-} | \gamma_{\mu} | k^{-} \rangle \langle q^{-} | \gamma^{\mu} | k^{-} \rangle}{\langle q k \rangle^{2}} = 0$$

$$\frac{\langle q k \rangle^{2}}{\langle q k \rangle^{2}} = 0$$

$$\frac{\langle q k \rangle^{2}}{\langle q k \rangle^{2}} = 0$$

Spinor conventions (IV)

- Choice of reference momentum q can simplify calculation
 - useful identities

$$\epsilon^{\pm}(k_{i},q) \cdot q = 0$$

$$\epsilon^{+}(k_{i},q) \cdot \epsilon^{+}(k_{j},q) = \epsilon^{-}(k_{i},q) \cdot \epsilon^{-}(k_{j},q) = 0$$

$$\epsilon^{+}(k_{i},k_{j}) \cdot \epsilon^{-}(k_{j},q) = \epsilon^{+}(k_{i},q) \cdot \epsilon^{-}(k_{j},k_{i}) = 0$$

$$\epsilon^{+}(k_{i},k_{j})|j^{+}\rangle = \epsilon^{-}(k_{i},k_{j})|j^{-}\rangle = 0$$

$$\langle j^{+}|\epsilon^{-}(k_{i},k_{j}) = \langle j^{-}|\epsilon^{+}(k_{i},k_{j}) = 0$$

Helicity amplitudes (I)

n-gluon helicity amplitudes

• diference between n_+ positive and n_- negative helicities

- each row describes scattering process with n_+ positive and n_- negative helicities
- each circle represents one allowed helicity configuration

Helicity amplitudes (II)

- Example 5-gluon amplitude A_5
 - result of computing the 25 diagrams for the five-gluon process

$$A_5^{\text{tree}}(1^{\pm}, 2^{+}, \dots, 5^{+}) = 0$$

$$A_5^{\text{tree}}(1^{-}, 2^{-}, 3^{+}, \dots, 5^{+}) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$

n-point amplitudes

- Generally, for n-gluon amplitude A_n
 - $A_n^{\text{tree}}(1^{\pm}, 2^+, \dots, n^+) = 0$
 - maximal helicity violating (MHV) amplitudes Parke, Taylor '86 Berends, Giele '87

$$A_n^{\text{tree}}(1^-, 2^-, 3^+, \dots, n^+) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$$

Helicity amplitudes (III)

n-gluon helicity amplitudes

• effective supersymmetry at tree level $A_n^{\text{tree}}(1^{\pm}, 2^+, \dots, n^+) = 0$

Helicity amplitudes (IV)

n-gluon helicity amplitudes

• maximal helicity violating amplitudes Parke, Taylor '86 $A_n^{\text{tree}}(1^-, 2^-, 3^+, \dots, n^+) = i \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$

Tree level amplitudes

Recursion relations

- Build up full amplitude from simpler amplitudes with fewer particles
 - recursion relation from off-shell currents (momentum conservation) Berends, Giele '87

- Red gluons are off-shell, black gluons are on-shell
- Particularly suitable for numerical evaluation, e.g.
 - Alpgen Caravaglios, Mangano, Moretti, Piccini, Pittau, Polosa
 - HELAC/PHEGAS Draggiotis, Kleiss, Papadopoloulos

Sven-Olaf Moch

On-shell recursions (I)

- On-shell recursions in n-point process
 - (helicity) amplitudes written as sum over "factorizations" into on-shell amplitude Britto, Cachazo, Feng, Witten
- Proof exploits elementary complex analysis and general factorization properties of scattering amplitude
- Generality of proof permits extension to loop level

On-shell recursions (I)

- On-shell recursions in n-point process
 - (helicity) amplitudes written as sum over "factorizations" into on-shell amplitude Britto, Cachazo, Feng, Witten
- Proof exploits elementary complex analysis and general factorization properties of scattering amplitude
- Generality of proof permits extension to loop level

Basic idea

Parameter-dependent $[j, l\rangle$ shift of external massless spinors j and l

• define
$$\lambda_j = u_+(k_j)$$
 and $ilde{\lambda}_l = u_-(k_l)$

• complex parameter z

On-shell recursions (II)

Shift in spinors corresponds to shifting momenta to complex values

$$k_{j}^{\mu} \rightarrow k_{j}^{\mu}(z) = k_{j}^{\mu} - \frac{z}{2} \left\langle j^{-} \right| \gamma^{\mu} \left| l^{-} \right\rangle$$
$$k_{l}^{\mu} \rightarrow k_{l}^{\mu}(z) = k_{l}^{\mu} + \frac{z}{2} \left\langle j^{-} \right| \gamma^{\mu} \left| l^{-} \right\rangle$$

- momenta remain massless $k_j^2(z) = k_l^2(z) = 0$
- momentum conservation maintained
- Similarly for cases with massive particles Badger, Glover, Khoze '05

On-shell recursions (II)

Shift in spinors corresponds to shifting momenta to complex values

$$k_{j}^{\mu} \rightarrow k_{j}^{\mu}(z) = k_{j}^{\mu} - \frac{z}{2} \left\langle j^{-} \right| \gamma^{\mu} \left| l^{-} \right\rangle$$
$$k_{l}^{\mu} \rightarrow k_{l}^{\mu}(z) = k_{l}^{\mu} + \frac{z}{2} \left\langle j^{-} \right| \gamma^{\mu} \left| l^{-} \right\rangle$$

- momenta remain massless $k_j^2(z) = k_l^2(z) = 0$
- momentum conservation maintained
- Similarly for cases with massive particles Badger, Glover, Khoze '05

Amplitude at tree level

On-shell amplitude with shifted momenta k_j and k_l becomes parameter-dependent

 $A(z) = A(k_1, \dots, k_j(z), k_{j+1}, \dots, k_l(z), k_{l+1}, \dots, k_n)$

Physical amplitude recovered by taking z = 0

Sven-Olaf Moch

On-shell recursions (III)

- A(z) is analytic function containing only simple poles
 - exploit Cauchy's theorem and construct A(z) from its residues
- Assume $A(z) \rightarrow 0$ as $z \rightarrow \infty$
 - no 'surface term' in contour integral around circle at infinity
 - contour integral vanishes

$$\frac{1}{2\pi i} \oint_C \frac{dz}{z} A(z) = 0$$

On-shell recursions (III)

• A(z) is analytic function containing only simple poles

- exploit Cauchy's theorem and construct A(z) from its residues
- Assume $A(z) \rightarrow 0$ as $z \rightarrow \infty$
 - no 'surface term' in contour integral around circle at infinity
 - contour integral vanishes

$$\frac{1}{2\pi i} \oint_C \frac{dz}{z} A(z) = 0$$

Physical amplitude

• Evaluate integral as sum of residues and solve for the amplitude A(0)

$$A(0) = -\sum_{\text{poles }\alpha} \operatorname{Res}_{z=z_{\alpha}} \frac{A(z)}{z}$$

Requirement of vanishing A(z) as $z \to \infty$ satisfied at tree level by wide classes of shifts

z

On-shell recursions (IV)

• Construction of physical amplitude A(0) with $[j, l\rangle$ shift

$$A(0) = C_{\infty} + \sum_{r,s,h} A_L^h(z = z_{rs}) \frac{i}{K_{r...s}^2} A_R^{-h}(z = z_{rs})$$

- put shifted leg j in A_L (left) and shifted leg l in A_R (right) of pole in $K_{r...s}^2 = (k_r + k_{r+1} + \dots + k_{s-1} + k_s)^2$
- sum over r, s (all cyclic orderings of remaining n-2 legs)
- sum over $h = \pm 1$ (helicity states)
- evaluate amplitudes A_L and A_R at $z = z_{rs} = \frac{K_{r...s}^2}{\langle j | K_{r...s} | l \rangle}$ (residue)
- $C_{\infty} = 0$ if $A(z) \rightarrow 0$ as $z \rightarrow \infty$ (no 'surface term')

On-shell recursions (IV)

• Construction of physical amplitude A(0) with $[j, l\rangle$ shift

$$A(0) = C_{\infty} + \sum_{r,s,h} A_L^h(z = z_{rs}) \frac{i}{K_{r...s}^2} A_R^{-h}(z = z_{rs})$$

- put shifted leg j in A_L (left) and shifted leg l in A_R (right) of pole in $K_{r...s}^2 = (k_r + k_{r+1} + \dots + k_{s-1} + k_s)^2$
- sum over r, s (all cyclic orderings of remaining n-2 legs)
- sum over $h = \pm 1$ (helicity states)
- evaluate amplitudes A_L and A_R at $z = z_{rs} = \frac{K_{r...s}^2}{\langle j | K_{r...s} | l \rangle}$ (residue)
- $C_{\infty} = 0$ if $A(z) \rightarrow 0$ as $z \rightarrow \infty$ (no 'surface term')

Example: six gluon scattering (I)

• Construction of six-gluon amplitude $A_6^{\text{tree}}(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

Example: six gluon scattering (I)

• Construction of six-gluon amplitude $A_6^{\text{tree}}(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

Step 1

• Choose $[3,4\rangle$ shift, $\tilde{\lambda}_3 \rightarrow \tilde{\lambda}_3 - z\tilde{\lambda}_4$, $\lambda_4 \rightarrow \lambda_4 + z\lambda_3$

Example: six gluon scattering (I)

• Construction of six-gluon amplitude $A_6^{\text{tree}}(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

Step 1

• Choose $[3,4\rangle$ shift, $\tilde{\lambda}_3 \rightarrow \tilde{\lambda}_3 - z\tilde{\lambda}_4$, $\lambda_4 \rightarrow \lambda_4 + z\lambda_3$

Step 2

- Draw all diagrams
 - second pair of diagrams (middle ones) vanishes

Example: six gluon scattering (II)

Step 3

Diagram 1

Example: six gluon scattering (II)

Step 3

- Diagram 1
- Combine on-shell amplitudes
 - define $P = k_2 + k_3$
 - z-dependent (hatted) momenta $\hat{3}, \hat{4}, \hat{P}$

• pole at
$$z = \frac{P^2}{\langle 3|P|4\rangle}$$

 $A_3^{\text{tree}}(2^-, \hat{3}^-, \hat{P}^+) \times \frac{i}{P^2} \times A_5^{\text{tree}}(1^-, -\hat{P}^-, \hat{4}^+, 5^+, 6^+) = \frac{\langle 2\hat{3}\rangle^3}{\langle \hat{3}\hat{P}\rangle\langle \hat{P}2\rangle} \frac{i}{P^2} \frac{\langle 1\hat{P}\rangle^3}{\langle \hat{P}\hat{4}\rangle\langle \hat{4}5\rangle\langle 56\rangle\langle 61\rangle}\Big|_{z=\frac{P^2}{\langle 3|P|4\rangle}}$

Example: six gluon scattering (II)

Step 3

- Diagram 1
- Combine on-shell amplitudes
 - define $P = k_2 + k_3$
 - z-dependent (hatted) momenta $\hat{3}, \hat{4}, \hat{P}$

• pole at
$$z = \frac{P^2}{\langle 3|P|4\rangle}$$

 $A_3^{\text{tree}}(2^-, \hat{3}^-, \hat{P}^+) \times \frac{i}{P^2} \times A_5^{\text{tree}}(1^-, -\hat{P}^-, \hat{4}^+, 5^+, 6^+) = \frac{\langle 2\hat{3}\rangle^3}{\langle \hat{3}\hat{P}\rangle\langle \hat{P}2\rangle} \frac{i}{P^2} \frac{\langle 1\hat{P}\rangle^3}{\langle \hat{P}\hat{4}\rangle\langle \hat{4}5\rangle\langle 56\rangle\langle 61\rangle}\Big|_{z=\frac{P^2}{\langle 3|P|4\rangle}}$

 $\hat{3}$

2

- Spinor helicity algebra, e.g. $\langle 2\hat{3} \rangle = \langle 23 \rangle$ for $[3, 4 \rangle$ shift
- Work hatted momenta $\hat{3}, \hat{4}, \hat{P}$ away

 $\hat{4}^+$

 1^{-}

P

 5^{+}

 6^{+}

Example: six gluon scattering (III)

Step 4

Diagram 2

- Calculate from diagram 1
 - complex conjugation ($\pm \leftrightarrow \mp$, $\langle .. \rangle \leftrightarrow [..]$, etc.)
 - relabeling of momenta $(1, 2, 3, 4, 5, 6) \rightarrow (6, 5, 4, 3, 2, 1)$

Example: six gluon scattering (IV)

Step 5

- Combine everything, obtain extremely compact result
 - define $s_{234} = (k_2 + k_3 + k_4)^2$, etc

$$A_{6}^{\text{tree}}(1^{-}, 2^{-}, 3^{-}, 4^{+}, 5^{+}, 6^{+}) = i\frac{1}{\langle 5|\not 3 + \not 4|2 \rangle} \left(\frac{\langle 1|\not 2 + \not 3|4 \rangle^{3}}{[23][34]\langle 56 \rangle \langle 61 \rangle s_{234}} + \frac{\langle 3|\not 4 + \not 5|6 \rangle^{3}}{[61][12]\langle 34 \rangle \langle 45 \rangle s_{345}} \right)$$

MHV rules

- Standard MHV and MHV expressions
 - three-gluon primitive amplitude
 - quark-gluon-antiquark primitive amplitude

$$\begin{aligned} A_3^{\text{tree}}(1^-, 2^-, 3^+) &= \frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 31 \rangle} , \qquad A_3^{\text{tree}}(1^+, 2^+, 3^-) &= -\frac{[12]^3}{[23][31]} , \\ A_3^{\text{tree}}(1^-_q, 2^-, 3^+_{\bar{q}}) &= -\frac{\langle 12 \rangle^2}{\langle 13 \rangle} , \qquad A_3^{\text{tree}}(1^-_q, 2^+, 3^+_{\bar{q}}) &= -\frac{[23]^2}{[13]} , \\ A_3^{\text{tree}}(1^+_q, 2^-, 3^-_{\bar{q}}) &= -\frac{\langle 23 \rangle^2}{\langle 13 \rangle} , \qquad A_3^{\text{tree}}(1^+_q, 2^+, 3^-_{\bar{q}}) &= -\frac{[12]^2}{[13]} . \end{aligned}$$

- Complex momenta k_i
 - three-point amplitudes do not vanish on-shell

Summary (part I)

Standard Model

- Successful experimental program at LHC relies crucially on detailed understanding of Standard Model processes
 - e.g. $pp \rightarrow boson + n$ jets with $n \leq 4$
- Perturbative predictions required for processes with $n \leq 7$ legs
 - amplitudes up to NLO for jets in final states (and with massive particles, e.g. W, Z or t)

Theory developments

- Analytical results for amplitudes
 - concepts of colour ordering and helicity amplitudes
- Recent progress
 - constructive approach for multi leg amplitudes
 - on-shell recursions exploit analyticity properties

Literature

Reviews:

- Multiparton amplitudes in gauge theories
 M.L. Mangano, S.J. Parke Phys.Rept.200 (1991) 301-367
- Lectures:
 - Calculating scattering amplitudes efficiently
 L.J. Dixon [hep-ph/9601359] (TASI '95)
 - Lectures on twistor strings and perturbative Yang-Mills theory
 F. Cachazo, P. Svrcek [hep-th/0504194] (S.I.S.S.A. Trieste '05)
- Original papers (my favourites):
 - Direct proof of tree-level recursion relation in Yang-Mills theory
 R. Britto, F. Cachazo, B. Feng, E. Witten [hep-th/0501052]
 - Recursion relations for gauge theory amplitudes with massive vector bosons and fermions

S. Badger, N. Glover, V. Khoze [hep-th/0507161]

On-shell recurrence relations for one-loop QCD amplitudes
 Z. Bern, L. Dixon, D. Kosower [hep-th/0501240]

Exercise (I)

- Calculate the (nonzero) helicity amplitude $A_4^{\text{tree}}(1^-, 2^-, 3^+, 4^+)$ using colour-ordered Feynman rules
 - Hint: Choose the reference momenta $q_1 = q_2 = k_4$, $q_3 = q_4 = k_1$, so that only contraction $\epsilon_2^- \cdot \epsilon_3^+$ is nonzero

Solution (I)

• Only one (with gluon exchange in s_{12} channel) graph contributes $A_4^{\text{tree}}(1^-, 2^-, 3^+, 4^+)$

$$= \left(\frac{i}{\sqrt{2}}\right)^{2} \left(\frac{-i}{s_{12}}\right)$$

$$\times \left[\epsilon_{1}^{-} \cdot \epsilon_{2}^{-} (k_{1} - k_{2})^{\mu} + (\epsilon_{2}^{-})^{\mu} \epsilon_{1}^{-} \cdot (2k_{2} + k_{1}) + (\epsilon_{1}^{-})^{\mu} \epsilon_{2}^{-} \cdot (-2k_{1} - k_{2})\right]$$

$$\times \left[\epsilon_{3}^{+} \cdot \epsilon_{4}^{+} (k_{3} - k_{4})_{\mu} + (\epsilon_{4}^{+})_{\mu} \epsilon_{3}^{+} \cdot (2k_{4} + k_{3}) + (\epsilon_{3}^{+})_{\mu} \epsilon_{4}^{+} \cdot (-2k_{3} - k_{4})\right]$$

$$= -\frac{2i}{s_{12}} \left(\epsilon_{2}^{-} \cdot \epsilon_{3}^{+}\right) \left(\epsilon_{1}^{-} \cdot k_{2}\right) \left(\epsilon_{4}^{+} \cdot k_{3}\right)$$

$$= -\frac{2i}{s_{12}} \left(-\frac{2}{2} \frac{[43]\langle 12 \rangle}{[42]\langle 13 \rangle}\right) \left(-\frac{[42]\langle 21 \rangle}{\sqrt{2}[41]}\right) \left(+\frac{\langle 13 \rangle [34]}{\sqrt{2}\langle 14 \rangle}\right)$$

$$= -i \frac{\langle 12 \rangle [34]^{2}}{[12]\langle 14 \rangle [14]} = i \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

• last line: antisymmetry, momentum conservation and $s_{34} = s_{12}$

Exercise (II)

- Calculate the helicity amplitude $A_6^{\text{tree}}(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$ using MHV rules
 - Hint: Choose the $[3,4\rangle$ shift, $\tilde{\lambda}_3 \to \tilde{\lambda}_3 z\tilde{\lambda}_4$, $\lambda_4 \to \lambda_4 + z\lambda_3$