Fermionic NNLO Corrections to $b \rightarrow s \gamma$

Stefan Bekavac in collaboration with Dirk Seidel and Matthias Steinhauser

Institut für Theoretische Teilchenphysik Universität Karlsruhe (TH)

International School-Workshop "Calculations for Modern and Future Colliders" Dubna, Russia, July 2006

Contents

- $b \rightarrow s \gamma$
- Mellin-Barnes Method
- Status
- Conclusion

Introduction

Inclusive decay $(B \rightarrow X_s \gamma)$:

- good agreement of experimental data with SM predictions
- precision tests of SM
- Sensitivity to effects of "new physics"
- nonperturbative effects are small (5%)
- well approximated by partonic decay $b \rightarrow s\gamma$ Aim: Fermionic NNLO corrections to $b \rightarrow s\gamma$

Effective Theory

$$H_{eff} = -\frac{4G_F}{\sqrt{2}}\lambda_t \sum_{i=1}^8 C_i(\mu) O_i(\mu)$$

- Resummation of large logarithms
- Heavy particles (W,t) are integrated out.
- Matching with full theory at $\mu = m_W$
- 1. Computation of the matching coefficients $C_i(\mu)$ to $\mathcal{O}(\alpha_s^2)$
- 2. Evolution of the $C_i(\mu)$ from $\mu = m_W$ to $\mu = m_b$
- 3. $\mathcal{O}(\alpha_s^2)$ calculation of $\langle s\gamma | O_i(\mu) | b \rangle$

• Numerically important: $O_2 = (\bar{s}_L \gamma_\mu c_L)(\bar{c}_L \gamma^\mu b_L)$

Known Results

• Matching coefficients at NNLO

[Misiak et al. 2004] [Bobeth et al. 2000]

• Mixing at NNLO

[Gorbahn et al. 2005]

• Matrix elements:

- 2 loops, $M = m_c$
- 3 loops, $M = m_c$, m = 0

[Greub et al. 1996] [Bieri et al. 2003]

• new: 3 loops, $M = 0, m = m_b$

Outline of the Calculation

- Generation of the relevant 3 loop diagrams
- Reduction to master integrals
 - Laporta algorithm
- Calculation of the master integrals
 - Dimensional regularization
 - Mellin-Barnes method
- Renormalization

Dimensional Regularization:

- integrals in $D = 4 2\varepsilon$ dimensions.
- Expansion in ε
- \bullet UV divergences \rightarrow poles in ε

Reduction to Master integrals

Map complicated integrals to a set of simpler ones (master integrals) using *integration by parts* relations \rightarrow *Laporta algorithm* [Laporta 2000] We use a new program by P. Marquard and D. Seidel.

Mellin-Barnes-Method

Mellin-Barnes integral:

[Smirnov 2004]

- transforms sums to products
- e.g. massive propagator to massless propagator
- introduces complex integrations

Analytical Continuation of MB integrals

MB integrals have singularities for $\varepsilon \to 0$ (\leftrightarrow UV poles) \rightarrow analytical continuation in ε necessary. E.g. by shifting contours:

Automatized using Tausk's prescription[Tausk 1999][Czakon 2005], [Anastasiou 2005]

Calculation of Master Integrals

$$= \int \frac{1}{(k^2 + m^2) \left[(l-k)^2 + m^2\right] (l-p)^2 p^2 \left[(q-l)^2 + m^2\right] (l-p-Q)^2}$$

massive propagators → massless, 3 MB-integrations

$$= \int dz_1 \int dz_2 \int dz_3 \, (m^2)^{z_1 + z_2 + z_3}$$

• Feynman parameterization for "massless" diagram

$$\frac{1}{A^{\alpha} B^{\beta}} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_0^1 dx_1 \int_0^1 dx_2 \, x_1^{\alpha - 1} \, x_2^{\beta - 1} \, \frac{\delta(x_1 + x_2 - 1)}{(x_1 A + x_2 B)^{\alpha + \beta}}$$

Stefan Bekavac, Karlsruhe

Master Integrals (2)

• Evaluate momentum integrals

$$\int \frac{d^d l}{i \, \pi^{d/2}} \frac{1}{(l^2 - \Delta + i0)^n} = e^{-ni\pi} \, (\Delta - i0)^{\frac{d}{2} - n} \, \frac{\Gamma(n - \frac{d}{2})}{\Gamma(n)}$$

- MB representation of sums in denominator
- Evaluate Feynman parameter integrals

$$\int_0^1 dx \, x^{\alpha - 1} (1 - x)^{\beta - 1} = \frac{\Gamma(\alpha) \, \Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

$$\int_{-i\infty}^{+i\infty} dz_j \, (-1)^{-2(3\varepsilon+z_2+z_3+z_4)} \Gamma(-\varepsilon) \Gamma(-\varepsilon-z_1) \Gamma(-z_1) \Gamma(z_1+1) \times \Gamma(\varepsilon+z_1+1) \Gamma(-2\varepsilon-z_1-z_2) \Gamma(-z_2) \Gamma(-\varepsilon-z_3+1) \Gamma(-z_3) \Gamma(-z_4) \dots$$

Master Integrals (3)

- ▷ Analytical continuation and expansion in ε (MB) Numerical evaluation of MB-integrals
- Evaluation by Barnes' Lemma

$$\frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} dz \Gamma(a+z) \, \Gamma(b+z) \, \Gamma(c-z) \, \Gamma(d-z) = \frac{\Gamma(a+c) \, \Gamma(a+d) \, \Gamma(b+c) \, \Gamma(b+d)}{\Gamma(a+b+c+d)}$$

Evaluation via residue theorem (infinite sum over residues)
 Last step: 1-dimensional MB-integral

$$\int_{-i\infty}^{+i\infty} dz (-1)^{-2z} 2^{-8\varepsilon - 2z + 1} \Gamma\left(\frac{1}{2} - \varepsilon\right) \Gamma(1 - \varepsilon)^2 \Gamma(-\varepsilon) \Gamma(\varepsilon) \Gamma(-3\varepsilon - z + 1)^2 \times \frac{\Gamma\left(-3\varepsilon - z + \frac{3}{2}\right) \Gamma(-\varepsilon - z + 1)^2 \Gamma(-z) \Gamma(\varepsilon + z) \Gamma(3\varepsilon + z)}{\pi \Gamma(1 - 2\varepsilon)^2 \Gamma(-2\varepsilon - 2z + 2) \Gamma(-4\varepsilon - z + 2) \Gamma(-3\varepsilon - z + 2)}$$

Master Integrals (4)

- Analytical Continuation
- Residues \rightarrow Sums of n^k , $\Gamma(n)$, $\psi^m(n)$
- Symbolic Summation
 - ▷ SUMMER, XSUMMER, nestedsums, HypExp,...
- Numerical Summation
 - improvement by convergence acceleration
 - \triangleright PSLQ

• Numerical result for the example:

 $= 0.33333 \varepsilon^{-3} + 1.35506 \varepsilon^{-2} + 2.65791 \varepsilon^{-1} + 13.9472 + 3.97114 \varepsilon^{-1} + 13.97114 \varepsilon$

Renormalization

Counterterm contributions:

- **1.** Renormalization of α_s
- **2.** Mixing of O_2 and O_4 at order α_s
- 3. Mixing of O_2 and O_4 at order $\alpha_s^2 n_f$
- 4. Mixing of O_2 and O_7 at order $\alpha_s^2 n_f$

1, 3 and 4 could be taken from known results.

2 had to be newly calculated.

Check with known results

Recalculation of the two loop results [Greub et al. 1996] and the 3 loop m = 0 results [Bieri et al. 2003] for the case M = 0.

Check (2)

$$< s\gamma |O_2|b > = < s\gamma |O_7|b > \times$$

$$\frac{\alpha_s}{4\pi} \left\{ Q_u \left(\frac{100}{81} + \frac{16}{27}L + \frac{8i\pi}{27} \right) + Q_d \left(-\frac{29}{3} + 8L - \frac{4i\pi}{3} \right) \right\}$$

$$+ \left(\frac{\alpha_s}{4\pi} \right)^2 n_f \left\{ Q_u \left(\frac{1021}{54} + \frac{\pi^2}{9} - 20L + 8L^2 + \frac{47i\pi}{9} - \frac{8i\pi}{3}L \right)$$

$$+ Q_d \left(-\frac{6160}{729} + \frac{80\pi^2}{81} + \frac{80}{27}L + \frac{32}{27}L^2 - \frac{16i\pi}{9} + \frac{32i\pi}{27}L \right) \right\}$$

$$L = \ln(\frac{m_b}{\mu})$$

Status

- Known results could be reproduced
- All Master integrals could be evaluated numerically
- Some integrals could be evaluated analytically
- satisfactory numerical precision for the matrix element
 can be improved
- New results nearly completed

$$< s\gamma |O_2|b > =$$
 very preliminary

Conclusion

- $b \rightarrow s\gamma$
- Mellin-Barnes Method
- New results are on the way

Convergence Acceleration

$$s = \sum_{i=1}^{\infty} a_i \qquad \qquad s \cong s_n = \sum_{i=1}^{n} a_i$$

→ (nonlinear) sequence transformations

$$\{s_n\} \to \{s'_n\}, \qquad \qquad \lim_{n \to \infty} s'_n = \lim_{n \to \infty} s_n$$

→ iterative application to improve the accuracy Example: *Wynn's Rho algorithm*

$$\rho_{-1}^{(n)} = 0 \qquad \qquad \rho_0^{(n)} = s_n$$

$$\rho_{k+1}^{(n)} = \rho_{k-1}^{(n+1)} + \frac{k+1}{\rho_k^{(n+1)} - \rho_k^{(n)}}, \qquad k, n \in \mathbb{N}_0,$$

Example: $\zeta(2)$

$$\zeta(2) = \sum_{i=1}^{\infty} \frac{1}{i^2}$$

Results for $\zeta(2)$ $(n = 2000)$			
method	value	error	digits
sum	1.644 434 191 827 393	$5 \cdot 10^{-4}$	4
Theta	1.644 934 066 848 056	$1.7 \cdot 10^{-13}$	13
Epsilon	1.644 929 401 946 069	$4.7 \cdot 10^{-6}$	5
Aitken	1.644 934 037 602 495	$2.9 \cdot 10^{-8}$	8
Rho	1.644 934 066 848 226	$3.5 \cdot 10^{-265}$	264
Levin v	1.644 934 066 804 612	$4.4 \cdot 10^{-11}$	11
exact	1.644 934 066 848 226		

PSLQ

N = 12.0806776188920853608008722501

Analytical result? \rightarrow ansatz: linear combination of $\zeta(n)$

$$N = a_1 \zeta_2 + a_2 \zeta_3 + a_3 \zeta_4 + a_4 \zeta_5 + a_5 \zeta_2 \zeta_3 + \dots, \qquad a_i \in \mathbb{Z}$$

Determination of a_i : "Integer Relation Detection" $\hookrightarrow PSLQ$ algorithm[Ferguson et al. 1992]

 $N = 2\,\zeta_2 + 3\,\zeta_3 + 5\,\zeta_5$