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Abstract

Topological particle-like solutions to be found in
realistic field theories under nonperturbative approach
are divided in 2 classes: topological defects (TD)
and topological solitons (TS). We exemplify and
compare such solutions in D=2 and D=3. Soliton
analog of Abrikosov-Nielsen-Olesen strings-vortices
are presented. We note that Weinberg-Salam EW
theory allows in principle existence of 3D topological
solitons in its bosonic sector



Introduction

• Importance of nonperturbative effects in QCD
is widely accepted: Confinement and SSB are
essentially nonperturbative effects. Necessity of
nonperturbative approaches is due to essential
nonlinearity of Yang-Mills field.

• SU(2) Yang-Mills field is an essential ingredient
of Weinberg-Salam EW theory. Again,
its nonlinearity makes nonperturbative study
necessary if one is interested in complete study
of physical picture which corresponds to Standard
Model Lagrangian. In particular, one can hope
to get answer for the old O.Rabi’s question:
”Who ordered this ?” –(about discovery of muon).
Thorough nonperturbative (i.e. lattice) study of
EW theory is thus highly desirable before going
beyond the Standard Model.

• Localized extended solutions (both defects and
solitons) are nonanalytical in coupling constant g;
thus their study can provide one with valuable
nonperturbative information.



Definitions

• Both topological defects, TD and topological
solitons, TS, describe particle-like (extended
localized, lumps) distributions of field energy,
but they ( TDs and TSs) differ in topological
properties:

• Solitons are uniform at space infinity, R → ∞,
field distributions of all fields involved. For TSs
topological charge (index) is a mapping degree of
the field distribution inside infinite radius (R = ∞)
sphere, which can be considered as the single point
- because of constancy of all fields on it. Space
RD is compactified by adding this infinite point,
and thus soliton maps RD

comp → SN .

• Defects are given by field distributions, which
are nonuniform at R = ∞. Their topological
indices are mapping degrees of the sphere with
R = ∞ set by the field distribution on this sphere,
SD−1

→ SN .

• Thus Topological Defects ARE NOT Topological
Solitons, and vice versa, Topological Solitons ARE
NOT Topological Defects.



Examples TDTS enddof

TDs       D=1 :  sine-Gordon kinks

       D=2:   Abrikosov-Nielsen-Olesen  strings-vortices

       D=3:   't Hooft - Polyakov monopoles - hedgehogs

   TSs     D=2: Belavin-Polyakov solitons (instantons),

   solitons in 2D Heisenberg magnets, "Baby-skytmions"

    D=3: Skyrmions, solitons in 3D Heisenberg magnets



Examples

Defects: nonuniform distributions at space infinity

Solitons: uniform distributions at space infinity

,D=2



Examples of Top. Solitons

• D = 2, Nonlinear sigma model (NLSM),
Heisenberg magnet, isovector scalar field.

L = (∂µsa)2, µ = 0, 1, 2, sasa = 1, a = 1, 2, 3,

sa is a 3-component unit isovector.

Boundary condition at R = ∞, R2 = x2 + y2 :
sa(∞) = sa

0
, i.e.sa

0
= (0, 0, 1), or sa

0
= (0, 0,−1).

Topological charge Qtop is an index of mapping
R2

comp → S2.

Extended solutions: Belavin-Polyakov 2D
topological solitons with Qtop = m.

• D = 3 Skyrme model of baryons, also NLSM,
but 4-component one. Scalar SU(2)-valued field
ua, uaua = 1, a = 1, 2, 3, 4. Boundary condition
at R = ∞, R2 = x2 + y2 + z2, ua(∞) = ua

0
, i.e.

ua
0

= (0, 0, 0, 1), or ua
0

= (0, 0, 0,−1).

Topological charge Qtop is an index of mapping
R3

comp → S3.

Extended solutions: Skyrmions,top. solitons with
Qtop = m



Examples of Top. Defects, D=2

• D = 2 Abelian Higgs model (NLSM), U(1) gauged
complex scalar model

L = |Dµφ|2 −
1

4
F 2

µν − V (φ), µ = 0, 1, 2,

φ is a complex scalar, V (φ) is a well-known Higgs
potential.

• Topological charge Qtop is an index of mapping of
sphere S1 of infinite radius , S1 → S1.

• Boundary condition for Qtop = 1 at R =
∞, R2 = x2 + y2 : (φ1 + iφ2)(∞) = x/R + iy/R,
(needles of Higgs field directed along radius-vector,
nonuniformity ! )

• Extended ANO solutions (Abrikosov-Nielsen-
Olesen strings-vortices) exist for various Qtop, they
are topological defects, the quasi-Higgs field is
nonuniform at spatial infinity. But hamilonian
density IS localized.

Wide applications for cosmic string discussion.
However problems with matching 2 and more
defects in physically acceptable way (see Fig.)



Examples of Top. Defects, D=3

• D = 3 Georgi-Glashow EW model, SO(3)
isovector scalar model gauged by SU(2) Yang-
Mills field

L = DµφDµφ −
1

4
F a

µνF
aµν

− V (φaφa),

µ = 0, 1, 2, a = 1, 2, 3, φa is 3-component
isovector scalar, V (φaφa) is a well-known Higgs
potential.

• Topological charge Qtop is an index of mapping of
sphere S2 of infinite radius , S2 → S2.

• Boundary condition for Qtop = 1 at R = ∞, R2 =
x2+y2+z2 : (φ1, φ2, φ3)(∞) = (x/R, y/R, z/R),
(needles of Higgs field directed along radius-vector,
again nonuniformity ! )

• Extended solutions (’t Hooft-Polyakov monopoles-
hedgehogs) exist for various Qtop, they are
topological defects, the quasi-Higgs field is
nonuniform at spatial infinity. But hamilonian
density IS localized.

Again problems with matching 2 and more defects
in physically acceptable way.





Top. Solitons vs Defects

• Ways of overcoming ’matcing problems’ for 2 and
more well-separated defects:
(i) inserting ’junctions’ in between defects,
(ii) setting ’multi-defects’ configurations.

⇒ Weakness of (i) way : it is already another
set of initial problem.
⇒ Weakness of (ii) way : even for infinite spatial
separation one obtains correlated defects, it is not
what we would like to have (say, as initial data for
Cauchy problem).

• Natural question: are there soliton analogs of ANO
strings-vortices in D = 2 and of ’t Hooft-Polyakov
monopoles-hedgehogs in D = 3 ?

• The answer in D = 2 is positive and is given by
2D topological solitons of the ’A3M’ model.

• The answer for D = 3 case will hopefully be found
by thorough nonperturbative investigation of
bosonic sector of Weinberg-Salam EW Lagrangian.



Top. Solitons in A3M model (1)

• Instead of complex scalar field in Abelian Higgs
model (AHM) we study 3-component isovector
scalar field sa(x) taking values on unit sphere
S2 : sasa = 1, having however selfinteraction
of so-called ’easy-axis’ type ( well-known in
magnetism theory). Similar to AHM introduce
gauge-invariant interaction of this field with
Maxwell field, making global U(1) symmetry of
easy-axis magnets local one. As a results we
arrive at A3M model, first introduced and studied
in PLB’97 paper (IB and A.Bogolubskaya)

L =
(

D̄µs
−
D

µs+ + ∂µs3∂
µs3

)

− V (sa) −
1

4
F 2

µν
,

(1)
D̄µ = ∂µ + igAµ, Dµ = ∂µ − igAµ,

s+ = s1 + is2, s
−

= s1 − is2,

Fµν = ∂µAν − ∂νAµ, V (sa) = β2(1 − s2
3),

µ, ν = 0, 1, ..., D, This NLSM model is the
gauge-invariant extension of classical Heisenberg
antiferromagnet model with easy-axis anisotropy.
This model supports D = 2 topological solitons,
which can be found using the following ansatz:
vortex – for the Maxwell field,
hedgehog – for scalar Heisenberg field.



Top. Solitons in A3M model (2)

• Topological charge of A3M solitons is defined as
mapping degree of sa(x) 3-component Heisenberg
field distribution inside infinite radius (R = ∞)
sphere, R2

comp → S2.

A3M solitons exist for integer Qtop- similar
to Belavin-Polyakov 2D solitons in isotropic

Heisenberg magnet.

• Boundary conditions correspond to uniform
distribution of the sa(x) field at R = ∞, and zero
value of Maxwell field Aµ(x) at space infinity.

• Energy of 2 A3M solitons with Qtop = 1 proves to
be greater than energy of 1 soliton with Qtop = 2.
As a result 2 such solitons attract to each other
and coalesce into 1 Qtop = 2 soliton.

• Beautiful, even unique, mathematical properties
of the A3M model (2 exact results obtained
in computer simulations) can most probably
be accounted for its high symmetry (U(1) ×

Z(2)). In particular, the A3M model is a
2-step generalization of well-known sine-Gordon
equation.



Top. Solitons in SU2-Higgs model (1)

• Consider the simplest EW model (reduction of
bosonic sector of Salam-Weinberg model), so-
called SU2-Higgs model with frozen radial degree
of freedom.

L = (DµΦb)
†(DµΦb) −

1

4
F a

µνF
aµν

DµΦb = ∂µΦb + i
2
gτaAa

µΦb, µ = 0, 1, 2, 3, a =
1, 2, 3, b = 1, 2, Φb is 2-component complex
doublet, defined by 4 real numbers ϕc, such that
ϕcϕc = 1, c = 1, 2, 3, 4. Thus SU2-Higgs model
describes gauge-invariant interaction of SU(2)
Yang-Mills with isospinor unit scalar field, taking
values on S3, this model also belongs to a class of
NLSMs.

• Boundary conditions at R = ∞, R2 = x2 + y2 +
z2 : ϕc(∞) = ϕc

0
, i.e.ϕc

0
= (0, 0, 0, 1), or sa

0
=

(0, 0, 0,−1). Topological charge Qtop is an index
of mapping R3

comp → S3 defined by distribution
of isospinor scalar field Φb(x) inside infinite radius
sphere S3.



Top. Solitons in SU2-Higgs model (2)

• Existence of topological solitons with integer
topological charge Qtop is not excluded. To find
TSolitons one has to use
(i) hedgehog ansatz for isospinor field with chosen
Qtop,
(ii)Generic 3-term ansatz for D = 3 Yang-Mills
solitons (Aa

0
= 0):

gAa
i = εiak

xk

R2
s(R)+

+
b(R)

R3
[(δiaR

2
− xixa) +

p(R)xixa

R4
],

i, k = 1, 2, 3 R2 = x2 + y2 + z2.

Study of TSolitons in SU(2)-Higgs model is in
progress.

• Note that SU(2)-Higgs model does not support
topological defects.



Instead of Conclusions

• Both TDefects and TSolitons describe localized,
particle-like distributions of energy density,
however it seems to be the only point of their
similarity :-)

• TDefects define nonuniform field distribution at
space infinity (at least for one of the fields
involved). This cause unavoidable problems
with their matching. TSolitons are free of this
problems.

• It is not advisable to use the term ”solitons”
for ”defects”, because it can lead to
misunderstanding and even wrong conclusions on
existence/nonexistence.

• Study of solitons within the Standard Model seems
to be increasingly important and interesting for
obtaining complete physical picture.

Thank you for your time!



2D Solitonic Strings

in a toy Electroweak
Model



Motivation

• Topological defects with localized energy
distributions are widely discussed in condensed
matter, cosmology and particle physics models.

• Well-known example in 2D: Abrikosov-Nielsen-
Olesen (ANO) strings-vortices. However there
are at least technical problems when matching 2
ANO defects.

• There is no problem when matching topological
solitons. So it seems interesting to find solitonic
analog of ANO defects.

• Do such topological solitons exist?

• If yes, are they stable?

• How do they interact with each other?

• What about 3D ?



Easy-axis Heisenberg Antiferromagnet

• Lagrangian of the easy-axis Heisenberg field is:

L = ∂µsa∂
µsa − V (sa), V (sa) = β2(1 − s2

3
),

sasa = 1, µ,= 0, 1, ..., D, a = 1, 2, 3.

• Note Lorentz invariance of this nonlinear σ-model,

global U(1) and Z(2) symmetry, Z(2) symmetry

is spontaneously broken;

Generalisation of sine-Gordon equation.

Possesses U(1) charged kinks for D = 1.

• This model can be called the A3 model, here A

stands for ”anisotropic”, 3 means 3-component.



The A3M model (1)

A3M : M stands for ”Maxwell”.

Now let’s make U(1) symmetry local .

The gauge-invariant Lagrangian density of the A3M

model reads:

L = η2
(

D̄µs
−
D

µs+ + ∂µs3∂
µs3

)

− V (sa) −
1

4
F 2

µν,

D̄µ = ∂µ + igAµ, Dµ = ∂µ − igAµ,

s+ = s1 + is2, s
−

= s1 − is2,

Fµν = ∂µAν − ∂νAµ, V (sa) = β2(1 − s2
3),

where β2, η2, are constants,
[

η2
]

= L(1−D),
[

β2
]

=

L−(1+D), g is a coupling constant, [g2] = L(D−3),

µ, ν = 0, 1, ..., D,. Equivalently,

L = η2(∂µsa)
2
− V (sa) −

1

4
F 2

µν + Lint

Lint = 2gη2Aµ(s2∂
µs1−s1∂

µs2)+g2η2(s2
1+s2

2)AµAµ.



The A3M model (2)

Making rescaling xµ → g−1η−1xµ, Aµ → η−1Aµ,

we obtain the Euler-Lagrange equations of the A3M
model in dimensionless form. These equations,
governing evolution of the fields sa(x), Aµ(x), in
(D + 1)-dimensional space-time, take the simplest
form if the Lorentz gauge, ∂µAµ = 0, is chosen:

∂µ∂µsi + [∂µsa∂
µsa + 2Aµjµ + p(s2

3
− δi3)

+AµAµ(s2

1
+s2

2
−δ1i−δ2i)]si−2Aµ(δ2i∂

µs1−δ1i∂
µs2) = 0,

jµ = s2∂µs1 − s1∂µs2,

∂µ∂µAν + 2jν + 2(s2

1
+ s2

2
)Aν = 0,

µ, ν = 0, 1, ..., D, i = 1, 2, 3

(we denote p=β2g−2η−4). Equation (4) can be
rewritten using variables s± = s1 ± is2 and s3:

∂µ∂µs± + [∂µsa∂
µsa + 2Aµjµ + ps2

3
− AµAµs2

3
]s±

−2iAµ∂µs± = 0,

∂µ∂µs3+[∂µsa∂
µsa+2Aµjµ

−p(1−s2

3
)+AµAµ(1−s2

3
)]s3 = 0.



The A3M model (3)

It is instructive to present the equations of the A3M
model in terms of angular variables θ, φ on the unit
sphere S2,

s1 = sin θ cos φ, s2 = sin θ sinφ, s3 = cos θ.

As a result the Lagrangian takes the form (in rescaled
xµ, Aµ):

g−2η−4
L = ∂µθ∂µθ

+ sin2 θ [∂µφ∂µφ − 2Aµ∂µφ + AµAµ
− p] −

1

4
F 2

µν.

and the Euler-Lagrange equations become:

∂µ∂µθ+
1

2
sin 2θ [p − ∂µφ∂µφ + 2Aµ∂µφ − AµAµ] = 0,

∂µ

[

sin2 θ(∂µφ − Aµ)
]

= 0,

∂µ∂µAν + 2jν + 2Aν sin2 θ = 0, jν = − sin2 θ∂νφ.

Now look for stationary solutions, arrive at

∂2

kθ −
1

2
sin 2θ

[

p + (∂kφ − Ak)
2
]

= 0,

∂k

[

sin2 θ(∂kφ − Ak)
]

= 0,

∂2

kAm + 2 sin2 θ(∂mφ − Am) = 0.



The A3M model(4):ansatz

Let us study localized solutions for D = 2 using the

”hedgehog” ansatz for the unit isovector field si(x),
i = 1, 2, 3,

s1 = cosmχ sin θ(r), s2 = sinmχ sin θ(r), s3 = cos θ(r),

sinχ =
y

r
, cosχ =

x

r
, r2 = x2 + y2,

where m is an integer number, and the ”vortex”

ansatz for the Maxwell field Aµ(x),

A0 = 0, A1 = Ax = −mα(r)
y

r2
, A2 = Ay = mα(r)

x

r2
.

As a result we obtain equations for θ(r) and α(r),

d2θ

dr2
+

1

r

dθ

dr
− sin θ cos θ

[

m2(α− 1)2

r2
+ p

]

= 0,

d2α

dr2
−

1

r

dα

dr
+ 2(1− α)sin2θ = 0.

with boundary conditions

θ(0) = π, θ(∞) = 0,

α(0) = 0,
dα

dr
(∞) = 0.



The A3M model (5)

Using series expansion of θ(r) and α(r) at r → 0,
we find for m = 1

θ(r) = π − C1r + o(r),

α(r) = r2(E2

1
−

1

4
C2

1
r2) + o(r4).

and for m = 2

θ(r) = π − C2r
2 + o(r2),

α(r) = r2(E2

2
−

1

12
C2

2
r4) + o(r6).

These equations are helpful when searching for

solutions of the problem with m = 1 and m = 2,
respectively, e.g., by the shooting method.



A3M solitons (1)

Numerical investigation shows that for 0 < p < pcr
there exists a unique soliton solution; the profile

functions θ(r) and α(r) of the A3M solitons with

m = 1 are presented below in Fig.1. The asymptotic

value α∞ = α(r = ∞) decreases monotonically as p
is increased, with α∞ → 1 when p → 0.

Distributions of the energy density

H(r) =

(

dθ

dr

)2

+sin2θ

[

p+
m2(α− 1)2

r2

]

+
m2

2

(

1

r

dα

dr

)2

,

and the magnetic field,−B(r) = (dα/dr)/r, for

solitons with m = 1 are plotted below in Figs. 2 and

3. The magnetic flux of the 2D solitons of the A3M
model is uniquely determined by values of p and the

topological charge Qt = m,

Φ =

∫

BdS =

∫

Akdxk = m

∫

2π

0

α(∞)dϕ = 2πmα∞(p).



A3M solitons (2)

Radial functions θ(r) and α(r) have been found

by numerical solving of boundary value problem for

various 0 < p < pcr ≈ 0.41.
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Figure 1: θ(r) and α(r) of the A3M solitons



A3M solitons (3)

Energy density distributions H(r) have been found

numerically from θ(r) and α(r) for various 0 < p <

pcr ≈ 0.41.
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Figure 1: Profiles of energy density H(r) of the A3M
solitons



A3M solitons (4)

Magnetic field distributions B(r) have been found

numerically from α(r) for various 0 < p < pcr ≈

0.41.
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Figure 1: Profiles of magnetic field B(r) of the A3M
solitons



A3M solitons(5): surprise

Dependence of α∞ on p has been found from series

of numerical simulations at various p.

Figure 1: α∞ versus p for A3M solitons

Why such surprising symmetry of the plot?

The only explanation available at the moment:

”Due to exclusive symmetry of the A3M model! ”

−−−−−−−−−−−−−−−−−−−−

Thus, EXACT result found by numerical simulations!


